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1 Gravitational Collapse of massive Star

If a star has mass higher than or about 5M�, it must enter a state of per-
petual gravitational collapse once it has exhausted all its nuclear fuel and
no equilibrium configurations are possible unless it manages to throw away
most of its mass by some process during this evolution. In fact, mass ejection
is observed in a supernova explosion for the star. When the core collapse is
halted or slowed down at nuclear densities, a shock wave is produced which
propagates outwards in the envelope of the star. While the inner core re-
mains a neutron star, the outer parts are driven away by the shock releasing
enormous mass and energy, which is believed to be a supernova explosion.
The theory for such ejection of matter is not well understood, however, and
at any rate it seems unlikely that all such massive stars will be able to throw
away almost all of their mass in such a process. The reason is, for stars hav-
ing tens of solar masses, this would amount to throwing away almost ninety
percent of the mass of the star. No suitable mechanism is envisaged today
which could achieve such a high degree of efficiency. Thus, if the shock could
not blow off all the outer layers, they would fall on the newborn neutron star
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and the collapse would continue again.

It was thought that a massive star which has exhausted its fuel, would
undergo mass ejection process and the mass of remnant star would always be
lower than the limit mentioned for the star to become a white dwarf through
electron degeneracy pressure, or from neutron degeneracy pressure giving a
neutron star [1]. Chandrashekhar [2] approximated the equation of state in
this case by an ideal electron Fermi gas and showed that there is a maximum
mass limit for the mass of spherical non-rotating star to achieve a white

dwarf stable state, which is given by Mc ∼ 1.4
(

2
µc

)2
M� (where µc is the

constant mean molecular weight per electron). Subsequently, considerable
work has been done on equations of state for the matter at nuclear densities
and it is seen that the maximum mass for non-rotating white dwarfs lies in
the range 1.0M� − 1.5M� depending on the composition of matter. Similar
considerations for neutron stars give corresponding range to be 1.3M� −
2.7M�.

But for massive enough stars (and very massive objects like the center of
galaxy) there is no evidence, either from the studies of stellar evolution or
from observations, that the mass loss could possibly play any such role.

1.1 Spherically Symmetric Space-time

In a spherically symmetric space-time, if P is any point at a distance r from
the origin O, the system must be invariant under rotations around O. Such
rotations will generate a two-sphere around O and the line element on it is
given by

ds2 = r2(dθ2 + sin2θdφ2) . (1)

This is a line element for a two-sphere given by t = const., r = const. in
a general spherically symmetric space-time. Further, as the metric must be
invariant under the reflections θ → π−θ and φ→ −φ, there must not be any
cross term in the metric in dθ and dφ. As the line element must not change
with any change in θ and φ, they must occur in the metric only in the form
of the two-metric given above. Then, in the (t, r, θ, φ) coordinates systems,
the metric has the form

ds2 = −eµdt2 + eνdr2 + r2(dθ2 + sin2θdφ2), (2)
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where µ = µ(t, r) and ν = ν(t, r).

The matter fields of a spacetime are represented by the energy-momentum
tensor (Tij) which are connected with the spacetime metric through the Ein-
stein’s equations namely

Gij = Rij −
1

2
gijR = 8πTij (3)

where Gij, Rij, R and Tij are the Einstein tensor, the Ricci tensor, the Ricci
scalar and the stress-energy tensor respectively. The all important conserva-
tion of energy and momentum are implied by the Bianchi identities namely

Gij
;j = 0 . (4)

The Einstein’s theory provides a vital interplay between the matter distri-
bution in the spacetime and its geometry. The force of gravity is built into
the theory from the outset through the Einstein’s equations (3), which link
the spacetime curvature to the distribution of matter.

The Einstein equations form a highly non-linear system of partial differ-
ential equations and due to their complexity, a complete general solution is
not known. The known exact solutions usually assume a rather high degree
of symmetry such as spherical or axial symmetry, or equivalently the exis-
tence of necessary Killing vector fields on the spacetime, and to that extent
represent an idealized situation. However, such spacetime examples provide
a good idea of what is possible within the framework of the general theory
of relativity. For example, the Minkowski spacetime is both the geometry
of the special theory of relativity and locally that of any general relativistic
model. Also, the spherically symmetric and asymptotically flat spacetimes
such as the Schwarzschild, radiating Schwarzschild (Vaidya radiation model)
and Kerr geometries are useful to model the spacetime outside the Sun and
stars and could be used to obtain conclusions relevant for the experimental
tests of the general theory of relativity.

Such solutions could also possibly represent the outcome of a complete
gravitational collapse of massive star.

1.2 Space-time singularity

By a spacetime singularity, we mean a portion of spacetime where mathemat-
ical equations of spacetime won’t fit at all, and none of the known physical
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laws would be applicable to that portion of spacetime. End state of a col-
lapsing star is thus an example of a singularity wherein the scalar curvature,
and the physical parameters like density and pressure assume infinite values.

For general spherically symmetric collapse model, we usually have an
initial Cauchy hypersurface S on which a non-singular initial data is specified.
The spacetime outside S is taken to be Ricci flat and inside this region, we
have the collapsing matter satisfying some physically reasonable equation of
state. The Einstein equations are evolved in the future of S. For a certain set
of initial conditions that include the formation of a trapped surface during
the collapse, a spacetime singularity develops (that is maximal evolution of
the field equations provides a spacetime which is geodesically incomplete).
Since the curvature scalars such as RijklR

ijkl diverge to infinity at a finite
affine parameter value, the model cannot be extended to a ‘more’ complete
spacetime. In the process of such a collapse, a region H develops in the
spacetime from which it is not possible to draw timelike curves of infinite
length into the future so as to reach a far away observer. Inside H, any
nonspacelike curve when extended maximally in future would encounter a
spacetime singularity. The boundary of this region is called absolute event
horizon and the region H is called a black hole(BH) in the spacetime. For
further details refer [1].

1.3 Energy conditions

1. The weak energy condition (WEC)

The term TijV
iV j represents the energy density as measured by a timelike

observer with the unit tangent vector V i where Tij and V i are the energy
momentum tensor and four velocity of the observer respectively. For all
reasonable classical physical fields this energy density (ρ) is generally taken
as non-negative. Therefore it is assumed that for all timelike vectors V i,
TijV

iV j ≥ 0 is satisfied. Such an assumption is called the weak energy
condition. This leads to the condition that ρ ≥ 0 and ρ + p ≥ 0 where p is
the pressure of the medium under consideration.

2. The strong energy condition (SEC)
It is reasonable that the matter stresses should not be so large that right hand
side of equation(3) becomes negative and this is satisfied when TijV

iV j ≥
−1/2T . Such an assumption is called the strong energy condition and it im-
plies that for all timelike and null vectors V i, RijV

iV j ≥ 0. In this situation,
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we have ρ ≥ 0 and ρ + 3p ≥ 0. Both the WEC and SEC are valid for well
known forms of matter such as perfect fluid.

3. The dominant energy condition (DEC)
This energy condition is required to study the singularity theorems which
states that in addition to the WEC, the pressure of the medium must not ex-
ceed the energy density. In other words, for all timelike vectors V i, TijV

iV j ≥
0 and the vector T ijVi is a non-spacelike vector. Such condition would be
satisfied provided the local speed of sound does not exceed the local speed
of light which means dp/dρ < c2 [3].

1.4 Cosmic Censorship Conjecture (CCC)

The singularity theorems do not necessarily imply that all the singularities
developing in gravitational collapse must be covered by event/apparent hori-
zon. The apparent horizon within the collapsing cloud is given by F/RN−1 =
1 (N is the dimension of the spacetime), which gives the boundary of the
trapped surface region in the spacetime. It is the behaviour of the apparent
horizon curve (which meets the central singularity at R = r = 0) near the
centre which essentially determines the visibility, or otherwise, of the cen-
tral singularity. For example, it is known within the context of the Tolman-
Bondi-Lemaitre models that the apparent horizon can be either past pointing
timelike or null, or it can be spacelike, as can be seen by examining the na-
ture of the induced metric on this surface [4]. This is unlike the event horizon
curve which is always future pointing and null. If the neighbourhood of the
centre gets trapped earlier than the singularity, then it is covered (BH), and
if that is not the case, then the singularity can be naked, with families of
non-spacelike trajectories escaping from it. We may thus have initial data
sets that can evolve into the formation of what is called a naked singularity
(NS).

Naked singularities can communicate with faraway observers. We can
have timelike and null trajectories coming out from such a singularity, and
possibly escaping to future null infinity and thus reaching a faraway observer.
Thus, obscure information can be gathered from naked singularities and so
the usual way of making predictions in the gravitation theory may break
down. Existence of naked singularities may also affect many of the standard
assumptions and results in the black hole physics. To ensure avoidance of
such an unphysical eventuality, one generally has to assume that the evolution
of continual gravitational collapse from generic initial data is such that, the
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resulting spacetime singularity is always covered so that the standard pre-
dictability is preserved. This assumption is known as the cosmic censorship
conjecture (CCC), articulated by Roger Penrose [5].

The, cosmic censorship conjecture can be stated in other words as
The result of a complete gravitational collapse must always be a black hole
and not a naked singularity, or all singularities of collapse must be hidden
inside the event horizon, causally disconnected from observers at infinity.

The CCC remains one of the most important unsolved problems in general
relativity and gravitation theory today. According to the strong cosmic
censorship conjecture, the singularities that appear in gravitational collapse
are hidden from all observers. It is weakened to exclude only locally naked
singularities in the sense that an observer within the event horizon and in
the interior of the black hole could possibly receive particles or photons from
the singularity, but may well be hidden behind an event horizon as opposed
to globally naked singularities visible to an asymptotic observer. So, if the
outgoing non-spacelike curves emanated from the singularity reach the far
away observer, the weak cosmic censorship is violated, (see [1, 6, 7] for reviews
of the CCC). For an asymptotic observer the violation of strong censorship is
of no harm, as long as the weak form is preserved. Both are equally serious
violations of a natural law which forbid the visibility of singularity. But the
formation of the singularity and its behavior, it seems, should be unaffected
by the activity in the asymptotic region, and should depend only on the
matter in a sufficiently local region or after crossing the event horizon.

The cosmic censorship conjecture has remained unproved despite many
serious efforts. Part of the difficulty lies in not having a unique rigorous
statement one may try to prove. Consequently, examples that appear to
violate the CCC are very important and they are useful tools to study this
important issue. There is one seemingly naked singularity obvious to every-
one, the initial singularity of the Big Bang. This singularity is not really
a counter example to the conjecture because it did not form from regular
initial conditions and could not have done so according to the singularity
theorems of general relativity. Studying gravitational collapse using Einstein
equations is a formidable task, and evidence for formation of black hole is as
limited as for a naked singularity.
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2 Self-similarity

Colloquially self-similarity means part is similar to the whole. Profoundly,
a self-similar space-time is characterized by the existence of a homothetic
Killing vector field (Cahil and Taub, 1971). Such self-similarity is called the
first kind (or homothety or continuous self-similarity). Cahill and Taub has
showed that p = kρ is the only barotropic equation of state that is compatible
with self-similarity of the first kind [8].
In general relativity, there exists a natural generalization of homothety called
kinematic self-similarity, which is defined by the existence of a kinematic
selfsimilar vector field [9] (see also the earlier related works by Tomita [10]
). Kinematic self-similarity is characterized by an index and classified into
three kinds: the second ( or discrete self-similarity), zeroth and infinite kinds.

3 Self-similarity of First kind

The self-similarity of first kind admits a homothetic Killing vector field, that
is, a vector field ξ such that, Lξgµν = 2gµν , where the notation Lξgµν indicates
the Lie derivative of the metric, taken in the direction of the vector field ξ (to
note that, the Lie derivative compares gµν at two different points along the
integral curves of , and subtracts to construct a derivative. For the metric,
the Lie derivative reduces to Lξgµν = ξµ;ν + ξν;µ ). The choice of non-zero
constant 2, on the right hand side above is arbitrary, and can be fixed by
rescaling ξ.

A spherically symmetric space-time is self-similar if it admits a radial area
coordinate r and an orthogonal time coordinate t such that for the metric
components gtt and grr , we have

gtt(ct, cr) = cgtt(t, r) ; grr(ct, cr) = cgrr(t, r) for all c > 0.

Thus, along the integral curves of the Killing vector field, all points are similar
[1].

The general form of a spherically symmetric metric in comoving coordi-
nates can be written as

ds2 = −e2ν(t,r)dt2 + e2ψ(t,r)dr2 +R2(t, r)dΩ2, (5)

where dΩ2 = dθ2 + sin2θdφ2 is the usual metric on a two-sphere. The impo-
sition of self-similarity on this space-time results in considerable simplifica-
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tion. In particular, we have ν, ψ and S are functions of z only and z = t/r.
More generally, self-similarity can be thought of as a symmetry which causes
physical quantities to depend only on dimensionless parameters (which are
typically ratios of time and space variables such as z).

The stress-energy tensor for a perfect fluid is given by

Tab = [ρ(t, r) + P (t, r)]uaub + P (t, r)gab (6)

where four velocity of the fluid flow is ua = (e−ν , 0, 0, 0) and the pres-
sure and energy density in the comoving coordinates are given by P =
p(z)/(8πr2), ρ = η(z)/(8πr2). The self-similarity implies the existence of
constants of motion along dz = 0, which in turn allows the reduction of the
Einstein field equations Gij = 8πTij to a set of ordinary differential equations
[11].

We assume that the collapsing fluid obeys an adiabatic equation of state

p(z) = k η(z) (7)

where 0 ≤ k ≤ 1 is a constant. Cahill and Taub has showed that p = kρ is
the only barotropic equation of state that is compatible with self-similarity
of the first kind [8].

From the Bianchi identity
T ab;b = 0 (8)

it follows that

ṗ+
2p

z
= −(η + p)ν̇ (9)

η̇ = −(η + p)

[
ψ̇ +

2Ṡ

S

]
(10)

Integration of Eqs. (9) and (10), respectively, gives

e2ν = γ(ηz2)−2k/(1+k) (11)

e2ψ = α(η)−2/(1+k)S−4 (12)

where α and γ are integration constants. Elimination of S̈ from set of ordi-
nary differential equations associated with Gtt and Grr leads to(

Ṡ

S

)2

V +
Ṡ

S

(
V̇ + 2ze2ν

)
+ e2ψ+2ν

(
−η − e−2ψ +

1

S2

)
= 0 (13)
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and
V̇ = ze2ν

[
(η + p)e2ψ − 2

]
= ze2ν(H − 2) (14)

where the quantities V and H are defined as

V (z) = e2ψ − z2e2ν , H = (η + p)e2ψ (15)

One can also write H as

H = 8πr2e2ψ
(
T 1
1 − T 0

0

)
(16)

The matter satisfy weak energy condition if and only if

Tab v
avb ≥ 0 (17)

for all nonspacelike vector va. Thus for matter satisfying weak energy con-
dition, it follows that H(z) ≥ 0 for all z.

A self-similar space-time is characterized by the existence of a homothetic
Killing vector:

ξa = r
∂

∂r
+ t

∂

∂t
(18)

which is given by the Lie derivative

Lξgab = ξa;b + ξb;a = 2gab (19)

where L denotes the Lie derivative. Let Ka = dxa/dk be the tangent vector
to the null geodesics, where k is an affine parameter. Then

gabK
aKb = 0 (20)

It follows that along null geodesics, we have

ξaKa = C (21)

where C is a constant. From the above algebraic equation and the null
condition (20), we get

re2ψKr − te2νKt = C (22)

−e2ν(Kt)2 + e2ψ(Kr)2 = 0 (23)

Solving these equations, we have exact expressions for Kt and Kr:

Kt =
C
[
z ± e2ψQ

]
r [e2ψ − e2νz2]

(24)
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Kr =
C [1± ze2νQ]

r [e2ψ − e2νz2]
(25)

where Q =
√
e−2ψ−2ν > 0.

The nature of singularity is studied by employing the technique developed
by Dwivedi and Joshi [12]. Radial null geodesics (θ and φ = const.), by
virtue of Eqs. (24) and (25), satisfy

dt

dr
=

z ± e2ψQ
1± ze2νQ

(26)

At this point, we note that a curvature singularity forms at the origin (t =
0, r = 0), where the physical quantities like density diverges. This diver-
gence of the density in this singularity results also in a divergence of curvature
scalars there. The nature of the singularity (a naked singularity or a black
hole) can be characterized by the existence of radial null geodesics emerging
from the singularity. The singularity is at least locally naked if there exist
such geodesics, and if no such geodesics exist it is a black hole. If the singu-
larity is naked, then there exists a real and positive value of z0 as a solution
to the algebraic equation [7]

z0 = lim
t→0 r→0

z = lim
t→0 r→0

t

r
= lim

t→0 r→0

dt

dr
(27)

Using (26) and L’Hôpital’s rule we can derive the following equation

V (z0)Q(z0) = 0 (28)

Since Q > 0, this implies that

V (z0) = 0 (29)

This algebraic equation governs the behavior of the tangent near the singular
points. The central shell focusing is at least locally naked if Eq. (29) admits
one or more positive roots. The values of the roots give the tangents of the
escaping geodesics near the singularity. The smallest value of z0, say zs0,
corresponds to the earliest ray escaping from the singularity which, is called
the Cauchy horizon of the space-time and there is no solution in the region
z < zs0. Thus in the absence of a positive root to Eq. (29), the central
singularity is not naked because there is no outgoing future directed null
geodesics emanating from the singularity.
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Further studying self-similar field equations, Joshi and Dwivedi found
that the condition V (z) = 0 has real positive roots in terms of physical
parameters of energy density η0 and η1 [1].

Also they have discussed global visibility of the naked singularity. A
naked singularity can be considered as a physically significant singularity, if
it can escape from singularity to far away observers for a finite period of time.
They have shown that infinity of integral curves would escape the singularity
provided the weak energy condition is fulfilled.

Further, we determine the curvature strength of the naked singularity,
which is an important aspect of a singularity [13]. A singularity is grav-
itationally strong or simply strong if volume elements get crushed to zero
dimensions at the singularity, and weak otherwise. It is widely believed that
a space-time does not admit an extension through a singularity if it is a
strong curvature singularity in the sense of Tipler [14]. A necessary and
sufficient condition criterion for a singularity to be strong has been given by
Clarke and Królak [15] that for at least one non-spacelike geodesic with affine
parameter c, in the limiting approach to the singularity, we must have

lim
c→0

c2ψ = lim
c→0

c2RabK
aKb > 0 (30)

where Rab is the Ricci tensor. Our purpose here is to investigate the above
condition along future directed radial null geodesics that emanate from the
naked singularity. Eq. (30) can be expressed as

lim
c→0

c2ψ =
4H0

(H0 + 2)2
> 0 (31)

where H0 = H(z0) at the singularity t = 0, r = 0, c = 0 and z = z0. Thus
along radial null geodesics strong curvature condition is satisfied if H0 > 0,
which is also a necessary condition for the energy condition. Thus it follows
that singularities are gravitationally strong if the weak energy condition is
satisfied. Thus study of gravitational collapse of self-similar model of first
kind reveals occurrence of globally NS as a counter example to CCC.

Ghosh, Sarwe and Saraykar studied the self-similar model of first kind and
cosmic censorship, and extended 4-D results to 5-dimensional space-time [16].
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4 Self-similarity of second, zeroth and infi-

nite kind

In this section, we study the self-similarity models of various kinds in spheri-
cally symmetric space-time given by metric (5). We consider the matter field
to be perfect fluid described by

Tij = p(t, r)gij + [ρ(t, r) + p(t, r)]uiuj. (32)

In terms of comoving coordinates, Einstein field equations and equations
of motion of perfect fluid with units G = 1, c = 1 are written as [17]

8πρ =
1

R2
+ e−2ν

[(
Rt

R

)2

+ 2ψt
Rt

R

]

−e−2ψ
[

2
Rrr

R
− 2ψr

Rr

R
+

(
Rr

R

)2
]

(33a)

8πp = − 1

R2
+ e−2ψ

[(
Rr

R

)2

+ 2νr
Rr

R

]

−e−2ν
[

2
Rtt

R
− 2νt

Rt

R
+

(
Rt

R

)2
]

(33b)

8πp = e−2ψ
[
νrr + ν2r − νrψr +

Rrr

R
+
Rrνr
R
− Rrψr

R

]
−e−2ν

[
ψtt + ψ2

t − νtψt +
Rtt

R
+
Rtψt
R
− Rtνt

R

]
(33c)

νr = − pr
ρ+ p

(33d)

ψt = − ρt
ρ+ p

− 2
Rt

R
(33e)

Rtr = νrRt + ψtRr (33f)

mr = 4πρRrR
2 (33g)

mt = −4πpRtR
2 (33h)

2m = R[1 + e−2νR2
t − e−2ψR2

r ] (33i)

where subscripts t and r denote derivative with respect to t and r, respec-
tively and m(t, r) is the Misner-Sharp mass.
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Maeda et. al. assume two different kinds of polytropic equations of state
(EoS): First is

p = Kργ (34)

where K and γ are constants. The second EoS is

p = Knγ and ρ = mb n+
p

γ − 1
(35)

where K 6= 0, γ 6= 0, 1, the constant mb and n(t, r) correspond to the mean
baryon mass and the baryon number density, respectively. The linear EoS is
also considered, and called here as EoS III,

p = Kρ where − 1 ≤ K ≤ 1 and K 6= 0. (36)

We note from EoS I and II that for γ < 0, the fluid suffers from thermody-
namical instability. For 0 < γ < 1, both EOS (I) and (II) are approximated
by a dust fluid in high-density regime, since p/ρ = Kργ−1 → 0 for ρ → ∞
for EoS I and for EoS II,

p

ρ
=

Knγ−1

mb + Knγ−1

γ−1

→ 0 for n→∞

When γ > 1, K = γ − 1 and since in high-density regime,

ρ = mb +
Knγ−1

γ − 1
→ Kn

γ−1

γ − 1
=

p

γ − 1
for n→∞

, so then here EoS II is approximated by EoS III.
In the case of γ > 2 for EoS II and γ > 1 for EoS I, the dominant energy
condition can be violated in high-density regime, which will be unphysical.

In a spherically symmetric spacetime, a vector field ζ is written in general
as

ζµ
∂

∂xµ
= h1(t, r)

∂

∂t
+ h2(t, r)

∂

∂r
(37)

where h1 and h2 are arbitrary functions. Note that h2 = 0 when ζ is parallel
to the fluid flow, while h1 = 0, when ζ is orthogonal to the fluid flow. When
ζ is tilted, in this case both h1 and h2 are non-zero.
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A kinematic self-similarity vector ξ satisfies the condition

Lξhµν = 2δhµν , (38a)

LξUµ = αUµ, (38b)

where hµν = gµν+UµUν is the projection tensor, α and δ are constants [9, 19].

The similarity transformation is characterized by the scale-independent
ratio, α/δ, which is referred to as the similarity index. In the case of δ 6= 0,
if we set δ = 1, the kinematic self-similar vector ξµ can be written as

ξµ
∂

∂xµ
= (αt+ β)

∂

∂t
+ r

∂

∂r
(39)

and in this case ξµ is said to be tilted.

The case of α = 1, β = 0 corresponds to the self-similarity of the first
kind (this is discussed in section 3), it follows that ξµ is a homothetic vector
and the self-similar variable ξ = r/t.

The case of α = 0, β = 1 corresponds to self-similarity of the zeroth kind,
here the self-similar variable is given by

ξ = re−t (40)

In the case of α 6= 0, 1, which is corresponding to self-similarity of the second
kind (β = 0), the self-similar variable is given by

ξ =
r

(αt)1/α
. (41)

The special case of δ = 0 and α 6= 0, the self-similarity is referred to as
the infinite kind (α = 1 is possible). The kinematic self-similar vector ξµ can
be written as

ξµ
∂

∂xµ
= t

∂

∂t
+ r

∂

∂r
(42)

and the self-similar variable ξ = r/t. in this case metric functions are written
as

R = S(ξ), eν = eν(ξ), eψ =
eψ(ξ)

r
(43)

In the case of δ 6= 0, self-similarity implies that the metric functions can
be written as

R = rS(ξ), ν = ν(ξ), ψ = ψ(ξ). (44)

In the following subsections, we study tilted case of self-similarity.
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4.1 Self-similarity of the second kind

In this case, Einstein field equations imply that the quantities m, ρ and p
must be of the form

2m = r

[
M1(ξ) +

r2

t2
M2(ξ)

]
, (45a)

8πρ =
1

r2

[
ρ1(ξ) +

r2

t2
ρ2(ξ)

]
, (45b)

8πp =
1

r2

[
P1(ξ) +

r2

t2
P2(ξ)

]
(45c)

where ξ = r/(αt)1/α. A set of ordinary differential equations is obtained
when one demands that the Einstein equations and the equations of motion
for the matter field are satisfied for the O[(r/t)0] and O[(r/t)2] terms sepa-
rately. On solving the equations for a perfect fluid (33a - 33i), the solution
is Schwarzschild spacetime in the Lemaitres choice of coordinates, written as
[17]

ds2 = −dt2 + r2/3g

[
(9/4)dr2

[3
2
(1− t/r3/2)]2/3

+ r2
[

3

2
(1− t/r3/2)

]4/3
dΩ2

]
(46)

where rg is a constant and the Schwarzschild radius corresponds to rg =
(3/2)(ρ− t) [18].

4.2 Self-similarity of zeroth kind

In this case, Einstein field equations imply that the physical quantities m, ρ
and p should be of the form

2m = r
[
M1(ξ) + r2M2(ξ)

]
, (47a)

8πρ =
1

r2
[
ρ1(ξ) + r2ρ2(ξ)

]
, (47b)

8πp =
1

r2
[
P1(ξ) + r2P2(ξ)

]
(47c)

where ξ = re−t. On solving the equations for a perfect fluid (33a - 33i), (for
details refer [17] ) with EoS I and II, one obtains a vacuum space-time while
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for EoS III, space-time is the de-Sitter with metric

ds2 = −dt′2 + e2
√
−po/3t′(dr′2 + r′2dΩ2), (48a)

2m = −po
3
r′3e3
√
−po/3t′ , (48b)

8πp = −8πρ = 8πpo (48c)

where po = −(3/c2o)(S
′/S)2, t′ = cot and r′ = sor

1−
√
−c2opo/3, and co and so

are constants.

4.3 Self-similarity of the infinite kind

In the case of self-similarity of infinite kind, field equations impose the con-
ditions on the quantities m, ρ and p to have the form

2m =
M1(ξ)

t2
+M2(ξ), (49a)

8πρ =
ρ1(ξ)

t2
+ ρ2(ξ), (49b)

8πp =
P1(ξ)

t2
+ P2(ξ) (49c)

where ξ = r/t. Following the usual procedure of solving the equations for a
perfect fluid (33a - 33i) with using EoS III, the solution is

ds2 = −s
2
o

c21
t′2so/c1−2[Asin(ln r′ − ln t′) +Bcos(ln r′ − ln t′)]2dt′2

+
s2o
r′2

(dr′2 + r′2dΩ2), (50a)

2m = −so, (50b)

8πp = −8πρ = − 1

s2o
(50c)

where t′ = tc1/so and r′ = rc1/so , c1 and so are constants. This solution though
not identical but closely related to the solution obtained by Nariai [20].
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5 Self-similarity vector ξµ parallel to Uµ

5.1 Self-similarity of second kind

We can choose ξµ to be

ξµ
∂

∂xµ
= t

∂

∂t
(51)

and then the metric can be expressed as

ds2 = −t2(α−1)e2ν(r)dt2 + t2dr2 + S(r)2t2dΩ2. (52)

The Einstein equations imply that the quantities m, ρ and p must be of the
form

2m = tM1(r) + t3−2αM2(r), (53a)

8πρ = t−2ρ1(r) + t−2αρ2(r), (53b)

8πp = t−2P1(r) + t−2αP2(r) (53c)

where ξ = r. The solution of set of field equations together with EoS I and
II gives the metric

ds2 = −dt′2 + (−po)−1
(

3

2co

)4/3

t′4/3(dr′2 + sin2r′dΩ2), (54a)

2m =

[
−
(

3

2

)2/3

c−2/3o (−po)−1/2t′2/3 + c−2o (−po)−3/2
]
sin3r′, (54b)

8πp =

(
3

2co

)−4/3
pot
′−4/3, (54c)

8πρ = −3po

(
3

2co

)−4/3
t′−4/3 +

4

3
t′−2. (54d)

where transformations used are t′ = (2co/3)t3/2 and r′ =
√
−por. This

solution is found to be the closed FRW solution with dust and comoving
fluids with p = ρ/3.

5.2 Self-similarity of zeroth kind

As in the above section of self-similarity of second kind of parallel case,
by keeping α = 0 in equations of subsection (4.1), analysis with EoS III
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give rise to the de-Sitter solution. With the coordinate transformation t =
exp(

√
−po/3t′), the solution is written as

ds2 = −dt′2 + e2
√
−po/3t′(dr2 + r2dΩ2), (55a)

2m =
−po

3
r3e3
√
−po/3t′ , (55b)

8πp = −8πρ = 8πpo. (55c)

5.3 Self-similarity of infinite kind

The self-similarity vector ξµ can be chosen as

ξµ
∂

∂xµ
= t

∂

∂t
. (56)

Field equations impose conditions on the quantities m, ρ and p to have the
form

2m = M(r), (57a)

8πρ = ρ(r), (57b)

8πp = P (r) (57c)

where ξ = r. Following the usual procedure of solving the equations for
a perfect fluid equations (33a - 33i), give the Tolman-Oppenheimer-Volkoff
equation. It implies that any spherically symmetric static spacetime is a
self-similar solution of the infinite kind in which kinematic self-similar vector
is parallel to the fluid flow. In a vacuum case, the Schwarzschild solution can
be obtained [17].

6 Self-similarity vector ξµ orthogonal to Uµ

6.1 Self-similarity of the second kind

The self-similarity vector ξµ is written as

ξµ
∂

∂xµ
= r

∂

∂r
. (58)
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The Einstein equations impose conditions that the quantities m, ρ and p
must be of the form

2m = rM1(t) + r3−2αM2(t), (59a)

8πρ = r−2ρ1(t) + r−2αρ2(t), (59b)

8πp = r−2P1(t) + r−2αP2(t) (59c)

It is noted that the solution is always singular at r = 0, which is correspond to
the physical center. Analysis shows that there are no solutions with respect
to EoS I and II. With the use of EoS III, the solution can be written as
follows:

ds2 = −r2αdt2 +
s2o

1− wos2o
+ s2or

2dΩ2, (60a)

M1 = wos
3
o, M2 = 0, (60b)

P1 =
α

2− α
ρ1 =

α

2− α
wo, (60c)

P2 = ρ2 = 0. (60d)

where wo and so are constants and (1 + 2α− α2)wos
2
o = α(2− α).

6.2 Self-similarity of the zeroth kind

In above sub-section, we can put α = 0, to understand and analyze the self-
similarity of zeroth kind. In a vacuum case, the Minkowski spacetime can be
obtained since M1 = M2 = 0.

On using EoS I and II, we can have flat FRW metric

ds2 = −dt2 + S2(dr2 + r2dΩ2) (61)

where the S is governed by equations

ρ2S
2 = 3S ′2, −P2S

2 = 2S ′′S + S ′2. (62)

In terms of EoS III, we have equations

P1 = Kρ1, P2 = Kρ2. (63)
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Herein, there are two solutions namely flat FRW space-time for K 6= 1 and
S = sot

2/3(1+K),

ds2 = −dt2 + t2/3(1+K)(dr′2 + r′2dΩ2), (64a)

2m =
4

9(1 +K)2
t−2K/(1+K)r′3, (64b)

8πp = 8πKρ =
4

3(1 +K)2
t−2. (64c)

and the other solution is the de-Sitter solution when K = 1 and S =
soe
√

(−po/3t :

ds2 = −dt2 + e2
√

(−po/3t(dr′2 + r′2dΩ2), (65a)

2m =
−po

3
e3
√

(−po/3tr′3, (65b)

8πp = −8πρ = po. (65c)

6.3 Self-similarity of the infinite kind

The self-similarity vector ξµ is expressed as

ξµ
∂

∂xµ
= r

∂

∂r
. (66)

The Einstein equations impose conditions that the quantities m, ρ and p
must be of the form

2m = e−2rM1(t) +M2(t), (67a)

8πρ = e−2rρ1(t) + ρ2(t), (67b)

8πp = e−2rP1(t) + P2(t). (67c)

The resulting equations for a perfect fluid are written as:

S = M2 = so, (68a)

M1 = 0, (68b)

P1 = ρ1 = 0, (68c)

P2 = −ρ2 = −wo = − 1

s2o
(68d)

where so and wo are constants. Further analysis give the metric function
as e2ψS−2 = −1 < 0, and therefore it can be concluded that there are no
solutions in this case, independent of the form of the equation of state.
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7 Conclusions

The study of gravitational collapse of self-similar model of first kind has
been carried out with the purpose of deliberating on the aspects of spheri-
cally symmetric self-similar space-time, its structure and formation of naked
singularity and its local/ global nature. The study reveals occurrence of
globally NS as a counter example to CCC in the gravitational of collapse of
the perfect fluid cloud.

The classification of the kinematic self-similar perfect-fluid solutions with
either equation of state (I), (II) or (III) has been studied. In most cases, the
governing equations can be integrated to give exact solutions, although there
are a few exceptions. The analytic form of general solutions has not been
obtained in the infinite-kind case with equation of state (III) for K = 1 in
which a kinematic self-similar vector is tilted. It should also be noted that,
independent of the form of the equation of state, kinematic self-similarity
of the infinite kind in the orthogonal case is incompatible with a spherically
symmetric spacetime.

In the cases of equation of state (I) and (II), (i.e., the polytropic equation
of state), the FRW solution is one of the compatible solutions. The closed
FRW solution with dust and p = ρ/3 comoving fluids is the second-kind
solution in the parallel case for equation of state (II) with γ = 2/3, while the
flat FRW solution is the zeroth-kind solution in the orthogonal case for both
equation of state (I) and (II), in which the scale factor is not a power-law
function of t in general.

These solutions further need to be studied to determine the strength of
the singularity, spacetime structure near the singularity and the formation
of BH and NS by analyzing the formation of apparent horizon.
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