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Abstract

In this article we present a review of a geometric and algebraic approach to causal
cones and describe cone preserving transformations and their relationship with the
causal structure related to special and general relativity. We describe Lie groups,
especially matrix Lie groups, homogeneous and symmetric spaces and causal cones
and certain implications of these concepts in special and general relativity, related
to causal structure and topology of space-time. We compare and contrast the results
on causal relations with those in the literature for general space-times and compare
these relations with K-causal maps. We also describe causal orientations and their
implications for space-time topology and discuss some more topologies on space-
time which arise as an application of domain theory. For the sake of completeness,
we reproduce proofs of certain theorems which we proved in our earlier work.
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1. Introduction

The notion of causal order is a basic concept in physics and in the theory of relativity
in particular. A space-time metric determines causal order and causal cone structure.
Alexandrov [1,2,3] proved that a causal order can determine a topology of space-time
called Alexandrov topology which, as is now well known, coincides with manifold
topology if the space time is strongly causal. The books by Hawking-Ellis, Wald and
Joshi [4,5,6] give a detailed treatment of causal structure of space-time. However, while
general relativity employs a Lorentzian metric, all genuine approaches to quantum gravity
are free of space-time metric. Hence the question arises whether there exists a structure
which gets some features of causal cones (light cones) in a purely topological or order-
theoretic manner. Motivated by the requirement on suitable structures for a theory of
quantum gravity, new notions of causal structures and cone structures were deployed on
a space-time.

The order theoretic structures, namely causal sets have been extensively used by
Sorkin and his co-workers in developing a new approach to quantum gravity [7]. As a
part of this program, Sorkin and Woolgar [8] introduced a relation called K - causality
and proved interesting results by making use of Vietoris topology. Based on this work
and other recent work, S. Janardhan and R.V. Saraykar [9, 10] and E.Minguzzi [11, 12]
proved many interesting results. Especially after good deal of effort, Minguzzi [12]
proved that K - causality condition is equivalent to stably causal condition.

More recently, K.Martin and Panangaden [13] making use of domain theory, a branch
of theoretical computer science, proved fascinating results in the causal structure theory of
space-time. The remarkable fact about their work is that only order is needed to develop
the theory and topology is an outcome of the order. In addition to this consequence, there
are abstract approaches, algebraic as well as geometric to the theory of cones and cone
preserving mappings. Use of quasi-order (a relation which is reflexive and transitive) and
partial order is made in defining the cone structure. Such structures and partial orderings
are used in the optimization problems [14], game theory and decision making etc [15].
The interplay between ideas from theoretical computer science and causal structure of
space-time is becoming more evident in the recent works [16, 17].

Keeping these developments in view, in this article, we present a review of geometric
and algebraic approach to causal cones and describe cone preserving transformations
and their relationship with causal structure. We also describe certain implications of
these concepts in special and general theory of relativity related to causal structure and
topology of space-time.

Thus in section 2, we begin with describing Lie groups, especially matrix Lie groups,
homogeneous spaces and then causal cones. We give an algebraic description of cones
by using quasi-order. Furthermore, we describe cone preserving transformations. These
maps are generalizations of causal maps related to causal structure of space-time which
we shall describe in section 3. We then describe explicitly Minkowski space as an
illustration of these concepts and note that some of the space-time models in general
theory of relativity can be described as homogeneous spaces.

In section 3, we describe causal structure of space time, causality conditions, K-
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causality and hierarchy among these conditions in the light of recent work of S. Janardhan
and R.V. Saraykar and E. Minguzzi and M. Sanchez [9, 10, 12, 18]. We also describe ge-
ometric structure of causal group, a group of transformations preserving causal structures
or a group of causal maps on a space-time.

In section 4, we describe causal orientations and their implications for space-time
topology. We find a parallel between these concepts and concepts developed by Martin
and Panangaden [13] to describe topology of space-time, especially a globally hyperbolic
one. Finally we discuss some more topologies on space-time which arise as an application
of domain theory. Some material from Sections 2 and 4 is borrowed from the book by
Hilgert and Olafsson [19].

We end the article with concluding remarks where we discuss more topologies which
are different from, but physically more significant than manifold topology.

2. Lie Groups, Homogeneous Spaces, Causal Cones and
cone preserving transformations

2.1. Lie Groups, Matrix groups and Homogeneous Spaces

To begin with, we describe Lie groups, matrix Lie groups, homogeneous and symmetric
spaces and state some results about them. These will be used in the discussion on causal
cones. We refer to the books [20, 21] for more details.

Definition 2.1. Lie groups and matrix Lie groups:
Lie group: A finite dimensional manifold G is called a Lie group if G is a group such
that the group operations, composition and inverse are compatible with the differential
structure on G. This means that the mappings
G×G → G : (x, y) �→ x.y and
G → G : x �→ x−1

are C∞ as mappings from one manifold to other.

The n-dimensional real Euclidean space Rn, n-dimensional complex Euclidean space
Cn, unit sphere S1 in R2, the set of all n × n real matrices M(n, R) and the set of all
n×n complex matrices M(n, C) are the simplest examples of Lie groups. M(n, R) (and
M(n, C)) have subsets which are Lie groups in their own right. These Lie groups are
called matrix Lie groups. They are important because most of the Lie groups appearing
in physical sciences such as classical and quantum mechanics, theory of relativity - spe-
cial and general, particle physics etc are matrix Lie groups. We describe some of them
here, which will be used later in this article.

Gl(n,R): General linear group of n × n real invertible matrices. It is a Lie group and
topologically an open subset of M(n, R). Its dimension is n2.
Sl(n,R): Special linear group of n× n real invertible matrices with determinant +1. It is
a closed subgroup of Gl(n, R) and a Lie group in its own right, with dimension n2 − 1.
O(n): Group of all n × n real orthogonal matrices. It is called an orthogonal group. It
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is a Lie group of dimension
n(n− 1)

2
.

SO(n): Special orthogonal group- It is a connected component of O(n) containing the
identity I and also a closed (compact) subgroup of O(n) consisting of real orthogonal
matrices with determinant +1. In particular SO(2) is isomorphic to S1.

The corresponding Lie groups which are subsets ofM(n, C) areGL(n, C), SL(n, C),
U(n) and SU(n) respectively, where orthogonal is replaced by unitary. SU(n) is a com-
pact subgroup of GL(n, C). For n = 2, it can be proved that SU(2) is isomorphic to
S3, the unit sphere in R4. Thus S3 is a Lie group. [However for topological reasons, S2

is not a Lie group, though it is C∞-differentiable manifold]

O(p,q) and SO(p,q): Let p and q be positive integers such that p + q = n. Consider
the quadratic form Q(x1, x2, . . . , xn) given by
Q = x2

1 + x2
2 + · · · x2

p − x2
p+1 − x2

p+2 · · · − x2
n.

The set of all n × n real matrices which preserve this quadratic form Q is denoted
by O(p, q) and a subset of O(p, q) consisting of those matrices of O(p, q) whose
determinant is+1, is denoted by SO(p, q). Both O(p, q) and SO(p, q) are Lie groups.
Here preserving quadratic form Q means the following:

Consider standard inner product η on Rp+q = Rngiven by the diagonal matrix: η =
diag(1, 1 . . . 1,−1,−1 . . .−1), (1 appearing p times). Then η gives the above quadratic
form Q(x1, x2, . . . , xn), i.e.XηXT = Q(x1, x2, . . . , xn) where X = [x1, x2, . . . , xn].
n× n matrix A is said to preserve the quadratic form Q if AT ηA = η.

O(p, q) is called indefinite orthogonal group and SO(p, q) is called indefinite

special orthogonal group. Dimension of O(p, q) is
n(n− 1)

2
.

Assuming both p and q are nonzero, neither of the groups O(p, q) or SO(p, q) are
connected. They have respectively four and two connected components. The identity
component of O(p, q) is denoted by SOo(p, q) and can be identified with the set of
elements in SO(p, q) which preserves both orientations.

In particular O(1, 3) is the Lorentz group, the group of all Lorentz transformations,
which is of central importance for electromagnetism and special theory of relativity.
U(p, q) and SU(p, q) are defined similarly. For more details, we refer the reader to
[20, 22]

We now define Homogeneous spaces and discuss some of their properties:

Definition 2.2. We say that a Lie groupG is represented as a Lie group of transformations
of a C∞ manifold M (or has a left (Lie)-action on M) if to each g ∈ G, there is associated
a diffeomorphism from M to itself: x �→ ψg(x), x ∈ M such that ψgh = ψgψh for
all g, h ∈ G and ψe = Id., Identity map of M , and if further-more ψg(x) depends
smoothly on the arguments g, x. i.e. the map (g, x) �→ ψg(x) is a smooth map from
G×M → M .
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The Lie group G is said to have a right action on M if the above definition is valid
with the property ψgψh = ψgh replaced by ψgψh = ψhg.

If G is any of the matrix Lie groups
GL(n, R), O(n, R), O(p, q) or GL(n, C), U(n), U(p, q) (where p+ q = n), then G

acts in the obvious way on the manifold Rn or R2n = Cn. In these cases, the elements
of G act as linear transformations.

The action of a group G is said to be transitive if for every two points x, y of M ,
there exists an element g ∈ G such that ψg(x) = y.

Definition 2.3. A manifold on which a Lie group acts transitively is called a homoge-
neous space of the Lie group.

In particular, any Lie group G is a homogeneous space for itself under the action
of left multiplication. Here G is called the Principal left homogenous space (of itself).
Similarly the action ψg(h) = hg−1 makes G into its own Principal right homogeneous
space.

Let x be any point of a homogeneous space of a Lie group G. The isotropy group
(or stationary group) Hx of the point x is the stabilizer of x under the action of G:
Hx = {g ∈ G/ψg(x) = x}.

We have the following lemma.

Lemma 2.4. All isotropy groups Hx of points x of a homogeneous space are isomorphic.

Proof. Let x, y be any two points of the homogeneous space. Let g ∈ G be such that
ψg(x) = y. Then the map Hx → Hy defined by h �→ ghg−1 is an isomorphism. (Here
we have assumed the left action). �

We thus denote simply by H, the isotropy group of some (and hence of every element
modulo isomorphism) element of M on which G acts on the left.

We now have the following theorem.

Theorem 2.5. There is a one- one correspondence between the points of a homogeneous
space M of the Lie group G, and the left cosets gH of H in G, where H is the isotropy
group and G is assumed to act on the left.

Proof. Letx0 be any point of the manifoldM . Then with each left cosetgHx0 we associate
the point ψg(x0) of M . Then this correspondence is well-defined, i.e. independent of
the choice of representative of the coset, one - one and onto.

It can be shown under certain general conditions that the isotropy group H is a closed
sub group of G, and the set G/H with the natural quotient topology can be given a
unique (real) analytic manifold structure such that G is a Lie transformation group of
G/H . Thus M ≈ G/H . �



1254 Sujatha Janardhan and R. V. Saraykar

Examples of homogeneous spaces are:

1. Stiefel manifolds: For each n, k(k ≤ n), the Stiefel manifold Vn,k has as its points all
orthonormal frames x = (e1, e2, . . . , ek) of k vectors in Euclidean n-space i.e. ordered
sequences of k orthonormal vectors in Rn. Then Vn,k is embeddable as a non- singular
surface of dimension nk−k(k+1)/2 in Rnk and can be visualized as SO(n)/SO(n−k).
In particular we have Vn,n

∼= O(n), Vn,n−1
∼= SO(n), Vn,1

∼= Sn−1.

2. Grassmannian manifolds: The points of the Grassmannian manifold Gn,k, are
by definition, the k-dimensional planes passing through the origin of n-dimensional
Euclidean space. This is a smooth manifold and it is given by Gn,k

∼= O(n)/O(k) ×
O(n− k). We now define symmetric spaces.

Definition 2.6. A simply connected manifold M with a metric gab defined on it, is called
a symmetric space (symmetric manifold) if for every point x of M , there exists an isom-
etry (motion) sx : M → M with the properties that x is an isolated fixed point of it, and
that the induced map on the tangent space at x reflects (reverses) every tangent vector
at x i.e. ξ �→ −ξ . Such an isometry is called a symmetry of M of the point x. For
every symmetric space, covariant derivative of Riemann curvature tensor vanishes. For
a homogeneous symmetric manifold M , let G be the Lie group of all isometries of M

and let H be the isotropy group of M with respect to left action of G on M . Then, as
we have seen above, M can be identified with G/H , the set of left cosets of H in G. As
examples of such spaces in general relatively, we have the following space-times:

Space of constant curvature with isotropy group H = SO(1, 3):

1. Minkowski space R4.

2. The de Sitter space
S+ = SO(1, 4)/SO(1, 3). Here S+ is homeomorphic to R×S3 and the curvature
tensor R is the identity operator on the space of bivectors �2(R4), R = Id.

3. The anti- de Sitter space
S = SO(2, 3)/SO(1, 3). This space is homeomorphic to S1×R3 and its universal
covering space is homeomorphic to R4. Here curvature tensor R = −Id.

Another example of symmetric space-time is the symmetric space Mt of plane waves.
For these spaces the isotropy group is abelian, and the isometry group is soluble (solv-
able). (A group G is called solvable if it has a finite chain of normal subgroups
{e} < G1 < ... < Gr = G, beginning with the identity subgroup and ending with
G, all of whose factors Gi+1/Gi are abelian). In terms of suitable coordinates, the met-
ric has the form ds2 = 2dx1dx4+[(cost)x2

2 + (sint)x2
3 ] dx2

4 +dx2
2 +dx2

3 , cost ≥ sint .
The curvature tensor is constant (refer [21]).

Gödel universe [4] is also an example of a homogeneous space but it is not a physically
reasonable model since it contains closed time like curve through every point. We now
turn our attention to Causal cones and cone preserving transformations.
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2.2. Causal cones and cone preserving transformations

We note that all genuine approaches to quantum gravity are free of space-time metric
while general relativity employs a Lorentzian space-time metric. Hence, the question
arises whether there exists a structure which gets some features of light cones in a purely
topological manner. Motivated by the requirements on suitable structures for a theory
of quantum gravity, new notions of causal structure and cone structures were developed
on a space-time M . Here we describe these notions.

The definition of causal cone is given as follows:
Let M be a finite dimensional real Euclidean vector (linear) space with inner product
<, >. Let R+ be the set of positive real numbers and R+

0 = R+ ∪ {0}. A subset C of M

is a cone if R+C ⊂ C and is a convex cone if C, in addition, is a convex subset of M .
This means, if x, y ∈ C and λ ∈ [0, 1], then λx + (1− λ)y ∈ C. In other words, C is a
convex cone if and only if for all x, y ∈ C and λ, µ ∈ R+, λx + µy ∈ C. We call cone
C as non- trivial if C �= −C. If C is non-trivial, then C �= {0} and C �= M .
We use the following notations:

i. Mc = C ∩ −C

ii. < C >= C − C = {x − y/x, y ∈ C}
iii. C∗ = {x ∈ M/∀y ∈ C, (x, y) ≥ 0}

Then Mc and < C > are vector spaces. They are called the edge and the span of C.
The set C∗ is a closed convex cone called the dual cone of C. This definition coincides
with the usual definition of the dual space M∗ of M by using inner product ( , ). If C

is a closed convex cone, we have C∗∗ = C, and (C∗ ∩ −C∗) =< C >⊥, where for
U ⊂ M, U⊥ = {y ∈ M/∀u ∈ U, (u, y) = 0}.
Definition 2.7. Let C be a convex cone in M . Then C is called generating if < C >= M .
C is called pointed if there exists a y ∈ M such that for all x ∈ C − {0}, we have
(x, y) > 0. If C is closed , it is called proper if Mc = {0}. C is called regular if it is
generating and proper. Finally, C is called self-dual, if C∗ = C.

If M is an ordered linear space, the Clifford’s theorem [23] states that M is directed
if and only if C is generating. The set of interior points of C is denoted by Co or int (C).
The interior of C in its linear span < C > is called the algebraic interior of C and is
denoted by alg int(C).

Let S ⊂ M . Then the closed convex cone generated by S is denoted by Cone(S):
Cone(S) = closure of {

∑
f inite

rss/s ∈ S, rs ≥ 0}.

If C is a closed convex cone, then its interior Co is an open convex cone. If � is
an open convex cone, then its closure � = cl(�) is a closed convex cone. For an open
convex cone, we define the dual cone by
�∗ = {x ∈ v/∀y ∈ �− {0}(x, y) > 0} = int (�∗) .
If � is proper, we have �∗∗ = �

We now have the following results: (cf [19, 24]).
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Proposition 2.8. Let C be a closed convex cone in M . Then the following statements
are equivalent:

i. Co is nonempty

ii. C contains a basis of M .

iii. < C >= M.

Proposition 2.9. Let C be a nonempty closed convex cone in M . Then the following
properties are equivalent:

i. C is pointed

ii. C is proper

iii. int (C∗) �= φ.

As a consequence, we have

Corollary 2.10. Let C be a closed convex cone. Then C is proper if and only if C∗ is
generating.

Corollary 2.11. Let C be a convex cone in M . Then C ∈ Cone(M) if and only if
C∗ ∈ Cone(M). Here Cone(M) is the set of all closed regular convex cones in M .

To proceed further along these lines, we need to make ourselves familiar with more
terminology and notations. The linear automorphism group of a convex cone is defined
as follows:
Aut (C) = {a ∈ GL(M)/α(C) = C}. GL (M) is the group of invertible linear transfor-
mations of M . If C is open or closed, Aut (C) is closed in GL (M). In particular Aut(C)
is a linear Lie group.

Definition 2.12. Let G be a group acting linearly on M . Then a cone C ∈ M is called G-
invariant if G.C = C. We denote the set of invariant regular cones in M by ConeG(M).
A convex cone C is called homogeneous if Aut (C) acts transitively on C.

For C ∈ ConeG(M), we haveAut (C) =Aut (Co) and C = ∂C∪Co = (C−Co)∪Co

is a decomposition of C into Aut (C) - invariant subsets. In particular a non-trivial closed
regular cone can never be homogeneous. We have the following theorem:

Theorem 2.13. Let G be a Lie group acting linearly on the Euclidean vector space M

and C ∈ ConeG(M). Then the stabilizer in G of a point in Co is compact.

Proof. Let � = Co, interior of a convex cone C. Here, C ∈ ConeG(M), the set of G-
invariant regular cones in M. We first note that for every v ∈ �, the set U = �

⋂
(v−�)

is open (being intersection of two open sets), non-empty
(v

2
∈ U

)
and bounded. Hence
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we can find closed balls Br

(v

2

)
⊂ U ⊂ BR

(v

2

)
(by property of open sets in a metric

space). Let a ∈ Aut(�)v = {b ∈ Aut(�)/b.v = v}. Then a.� ⊂ � and a.v = v.

Thus we obtain a(U) ⊂ U. Hence, a

(
Br

(v

2

))
⊂ a(U) ⊂ U ⊂ BR

(v

2

)
. Therefore,

a
(v

2

)
= v

2
implies ‖ a ‖≤ R

r
. Thus Aut(�)v is closed and bounded, that is, compact.

In the abstract mathematical setting, cones are described using quasi-order relation
[25] as follows:

1. Let M �= 0 be a set and * be a mapping of M × M into P∗(M) (the set of
all non-empty subsets of M). The pair (M, ∗) is called a hypergroupoid. For
A, B ∈ P∗(M), we define A ∗ B =

⋃
{a ∗ b : a ∈ A, b ∈ B}.

2. A hypergroupoid (M, ∗) is called a hypergroup, if (a ∗ b) ∗ c = a ∗ (b ∗ c) for all
a, b, c ∈ M , and the reproduction axiom, a ∗M = M = M ∗ a, for any a ∈ M ,
is satisfied.

3. For a binary relation R onA and a ∈ A denote UR(a) = {b ∈ A/ < a, b >∈ R}. A
binary relation Q on a set A is called quasiorder if it is reflexive and transitive. The
set UQ(a) is called a cone of a. In the case when a quasiorder Q is an equivalence,
UQ(A) = {x ∈ M/∃y ∈ A, < x, y >∈ Q} for any A ⊆ M . Analogously, for

B ⊆ A we set UQ(B) =
⋂
{UQ(a)/a ∈ B}.

item In the light of this definition, we shall observe in section 3 that causal cones and
K-causal cones fall in this category since causal relation < and K-causal relation
≺ are reflexive and transitive. �

In the literature, (see for example [26, 27, 28]), cone preserving mappings are defined
as follows:

1. Let A = (A, R) and B = (B, S) be quasi-ordered sets. A mapping h : A → B is
called cone preserving if h(UR(a)) = US(h(a)) for each a ∈ A.

2. To illustrate the concepts described above, we consider the example of the Minkowski
space.

2.3. Example of a Forward Light cone in Minkowski space

Note: In the paper by Gheorghe and Mihul [29], forward light cone is called ‘positive
cone’ and is defined as follows:

Let M be a n-dimensional real linear space. A causal relation of M is a partial ordering
relation≥ of M with regard to which M is directed , i.e. for any x, y ∈ M there is z ∈ M

so that z ≥ x, z ≥ y. Then the positive cone is defined as C = {x/x ∈ M; x ≥ 0}.
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Let p and q be two positive integers and n = p + q. Let M = Rn. We write elements

of M as v =
(

x

y

)
with x ∈ Rp and y ∈ Rq . For p = 1 , x is a real number.

We write projections pr1 and pr2 as pr1(v) = x and pr2(v) = y.
As discussed earlier, connected component of identity inO(p, q)denoted byO(p, q)o

= SO0(p, q) = SO(p, q)0. Also Let Q+r = {x ∈ Rn+1/Qp+1,q(x, x) = r2}, r ∈
R+, p, q ∈ N, n = p+ q ≥ 1. Clearly, O(p+ 1, q) acts on Q+r . Let {e1, e2, . . . , en}
be the standard basis for Rn. Then we have the following result.

Proposition 2.14. For p, q > 0, the group SO0(p+1, q) acts transitively on Q+r . The
isotropy sub group at re1 is isomorphic to SO0(p, q). As a manifold,

Q+r � SO0(p + 1, q)/SO0(p, q).

In particular for n ≥ 2, q = n − 1 and p = 1, we define the semi algebraic cone C in
Rn by C = {v ∈ Rn/Q1,q(v, v) ≥ 0, x ≥ 0} and set C∗ = � = {v ∈ Rn/Q1,q(v, v) >

0, x > 0}. C is called the forward light cone in Rn. We have M =
(

x

y

)
∈ C if and

only if x ≥‖ y ‖.
(Gheorghe and Mihul [29] state in Lemma 2.4 that There is a norm ‖‖ in M ( a n-1

dimensional linear real space) so that: Q = {x/x ∈ M; εx0 =‖ x ‖}, intC = {x/x ∈
M; εx0 >‖ x ‖}, where ε = 1 if (−1, 0) is not in C and ε = −1 if (1, 0) is not in C).

Boundary of C and Co are described as follows: ∂C = {v ∈ Rn/εx =‖ y ‖}, Co =
{v ∈ Rn/εx >‖ y ‖} where ε = 1 if (−1, 0) is not in C and ε �= 1 if (1, 0) ∈ C. If
v ∈ C ∩ −C, then 0 ≤ x ≤ 0 and hence x = 0. Then ‖ y ‖= 0 and thus y = 0. Thus
v = 0 and C is proper. For v, v′ ∈ C, we calculate

(v, v′) = (v′, v) = x
′
x + (y

′
, y) ≥‖ y′ ‖‖ y ‖ +(y′, y) ≥ 0.

Thus C ⊂ C∗.

Conversely, let v =
(

x

y

)
∈ C∗. Then testing against e1, we get x ≥ 0. We may

assume y �= 0. Define ω by pr1(ω) =‖ y ‖ and pr2(ω) = −y. Then ω ∈ C and
0 ≤ (w, v) = x ‖ y ‖ − ‖ y ‖2= (x− ‖ y ‖) ‖ y ‖. Hence x ≥‖ y ‖. Therefore y ∈ C

and thus C∗ ⊂ C. So C = C∗ and C is self-dual. Similarly, we can show that � is self
dual.

Moreover, the forward light cone C is invariant under the usual operation of SOo(1, q)

and under all dilations, λIn, λ > 0. (In is the n× n identity matrix). We now prove that
the group SOo(1, q)R+Iq+1 acts transitively on � = Co if q ≥ 2 (q = 3 for Minkowski

space). Thus � will be homogeneous. For this we prove that � = SOo(1, q)R+
(

1
0

)
.

Using

at =
⎛
⎝ cosh(t) sinh(t) 0

sinh(t) cosh(t) 0
0 0 In−2

⎞
⎠ ∈ SOo(1, q),
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we get

at

(
λ

0

)
= λt(cosh(t), sinh(t), 0, · · · , 0)

for all t ∈ R. Let Sq−1 denote a unit sphere in Rq . Now SO(q) acts transitively on Sq−1

and

(
1 0
0 A

)
∈ SOo(1, q) for all A ∈ SO(q). Hence the result follows by noting the

fact that coth(t) runs through (1,∞) as t varies in (0,∞).

3. Causal Structure of Space-times, Causality Conditions and
Causal group

3.1. Causal Structure and K-Causality

In this section, we begin with basic definitions and properties of causal structure of space-
time. Then we define different causality conditions and their hierarchy. Furthermore we
discuss causal group and causal topology on space-time in general, and treat Minkowski
space as a special case. We take a space-time (M , g) as a connected C2 - Hausdorff
four dimensional differentiable manifold which is paracompact and admits a Lorentzian
metric g of signature (−,+,+,+). Moreover, we assume that the space-time is space
and time oriented.

We say that an event x chronologically precedes another event y, denoted by x �
y if there is a smooth future directed timelike curve from x to y. If such a curve
is non-spacelike, i.e., timelike or null, we say that x causally precedes y or x < y.
The chronological future I+(x) of x is the set of all points y such that x � y. The
chronological past I−(x) of x is defined dually. Thus

I+(x) = {y ∈ M/x � y} and

I−(x) = {y ∈ M/y � x}.
The causal future and causal past for x are defined similarly:

J+(x) = {y ∈ M/x < y} and

J−(x) = {y ∈ M/y < x}
As Penrose [30] has proved, the relations � and < are transitive. Moreover, x � y

and y < z or x < y and y � z implies x � z. Thus I+(x) = J+(x) and also
∂I+(x) = ∂J+(x), where for a set X ⊂ M , X denotes closure of X and ∂X denotes
topological boundary of X. The chronological future and causal future of any set X ⊂ M

is defined as

I+(X) =
⋃
x∈X

I+(x) and

J+(X) =
⋃
x∈X

J+(x)
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The chronological and causal pasts for subsets of M are defined similarly.
An ordering which is reflexive and transitive is called quasi - ordering. This ordering

was developed in a generalized sense by Sorkin and Woolgar [8] and these concepts
were further developed by Garcia Parrado and Senovilla [31, 32] and S. Janardhan and
Saraykar [9] to prove many interesting results in causal structure theory in General
Relativity.

In the recent paper, Zapata and Kreinovich [28] call chronological order as open
order and causal order as closed order and prove that under reasonable assumptions, one
can uniquely reconstruct an open order if one knows the corresponding closed order.
For special theory of relativity, this part is true and hence every one-one transforma-
tion preserving a closed order preserves open order and topology. This fact in turn
implies that every order preserving transformation is linear. The conserve part is well
known namely, the open relation uniquely determines both the topology and the closed
order.

We now introduce the concept of K-causality and give causal properties of space-
times in the light of this concept. For more details we refer the reader to [9], [11, 12]
and [31, 32].

Definition 3.1. K+ is the smallest relation containing I+ that is topologically closed
and transitive. If q is in K+(p) then we write p ≺ q.

That is, we define the relationK+, regarded as a subset ofM×M , to be the intersection
of all closed subsets R ⊇ I+ with the property that (p, q) ∈ R and (q, r) ∈ R implies
(p, r) ∈ R. (Such sets R exist because M ×M is one of them.) One can also describe
K+ as the closed-transitive relation generated by I+.

Definition 3.2. An open set O is K-causal iff the relation ‘≺’ induces a reflexive partial
ordering on O. i.e. p ≺ q and q ≺ p together imply p = q.

If we regard Co as the interior of future light cone in a Minkowski space-time (p =
1, q = 3), then under standard chronological structure I+, M(a, b) becomes I−(b) ∩
I+(a). As it is well known, such sets form a base for Alexandrov topology and since
Minkowski space-time is globally hyperbolic and hence strongly causal, Alexandrov
topology coincides with the manifold topology (Euclidean topology). Thus, lemma 2 of
[9] is a familiar result in the language of Causal structure theory.

Analogous to usual causal structure, we defined in [9] strongly causal and future
distinguishing space-times with respect to K+ relation.

Definition 3.3. A C0-space-time M is said to be strongly causal at p with respect to
K+, if p has arbitrarily small K-convex open neighbourhoods.

Analogous definition would follow for K−. M is said to be strongly causal with
respect to K+, if it is strongly causal with respect to K+ at each and every point of
it. Thus, lemma 16 of [8] implies that K-causality implies strong causality with respect
to K+.
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Definition 3.4. A C0-space-time M is said to be K-future distinguishing if for every
p �= q, K+(p) �= K+(q). K-past distinguishing spaces can be defined analogously.

Definition 3.5. A C0-space-time M is said to be K-distinguishing if it is both K-future
and K-past distinguishing.

Analogous result would follow for K−. Hence, in a C0-space-time M , strong
causality with respect to K implies K-distinguishing.

Remark 3.6. K-conformal maps preserve K-distinguishing, strongly causal with respect
to K+ and globally hyperbolic properties.

Definition 3.7. A C0-space-time M is said to be K-reflecting if K+(p) ⊇ K+(q) ⇔
K−(q) ⊇ K−(p).
However, since the condition K+(p) ⊇ K+(q) always implies K−(q) ⊇ K−(p) be-
cause of transitivity and x ∈ K+(x), and vice versa, a C0-space-time with K-causal
condition is always K-reflecting. Moreover, in general, K-reflecting need not imply re-
flecting. Since, any K-causal space-time is K-reflecting, any non-reflecting open subset
of the space-time will be K-causal but non-reflecting.

We now give the interesting hierarchy of K-causality conditions as follows: We have
proved that strong causality with respect to K+ implies K-future distinguishing. Thus,
K-causality ⇒ strongly causality with respect to K ⇒ K-distinguishing.

Since a K-causal space-time is always K-reflecting, it follows that the K-causal space-
time is K-reflecting as well as K-distinguishing. In the classical causal theory, such a
space-time is called causally continuous [33]. (Such space-times have been useful in
the study of topology change in quantum gravity [34]). Thus if we define K-causally
continuous space-time analogously then we get the result that a K-causal C0-space-time
is K-causally continuous. Moreover, since K±(x) are topologically closed by definition,
analogue of causal simplicity is redundant and causal continuity (which is implied by
causal simplicity) follows from K-causality.

In [9], we proved the following theorems. Here we recall their proofs for the sake of
completeness.

Theorem 3.8. Let V be a globally hyperbolic C0-space-time. If S ⊆ V is compact then
K+(S) is closed.

Proof. Let S ⊆ V be compact. Let q ∈ cl(K+(S)). Then there exists a sequence qn in
K+(S) such that qn converges to q. Hence there exists a sequence pn in S corresponding
to qn and future directed K-causal curves 
n from pn to qn. Then pn has a subsequence
pnk

converging to p ∈ S since S is compact, which gives a subsequence 
nk
of future

directed K-causal curves from pnk
to qnk

where pnk
converges to p and qnk

converges to
q. Define P = {pnk

, p} and Q = {qnk
, q}. Then P and Q are compact subsets of V. Hence

the set C of all future directed K-causal curves from P to Q is compact. Now, {
nk
} is

a subset of C. Thus, {
nk
} is a sequence in a compact set and hence has a convergent

subsequence say 
nkl
of future directed K-causal curves from pnkl

to qnkl
where pnkl
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converges to p and qnkl
converges to q. Let 
 be the Vietoris limit of 
nkl

. Then 
 is a
future directed K-causal curve from p to q. Since p ∈ S, we have, q ∈ K+(S). Hence
cl(K+(S)) ⊆ K+(S). Thus K+(S) is closed. �

The next two theorems show that in a globally hyperbolic C0-space-time V, it is
possible to express K+(x) in terms of I+(x).

Theorem 3.9. If V is a globally hyperbolic C0-space-time, then
K+(p) = cl(int (K+(p)), p ∈ V .

Proof. LetV be globally hyperbolic. It is enough to prove thatK+(p) ⊆ cl(int (K+(p)),

p ∈ V . For this we show that cl(int (K+(p)) is closed with respect to transitivity. So, let
x, y, z ∈ cl(int (K+(p)) such that x ≺ y and y ≺ z. We show that x ≺ z. Since x, y, z

are limit points of int (K+(p)), there are sequences {xn}, {yn}, {zn} in int (K+(p)) such
that xn → x, yn → y, zn → z. Using first countability axiom, we may assume, without
loss of generality, that these sequences are linearly ordered in the past directed sense
[13]. Thus, for sufficiently large n, we can assume that xn ≺ yn and yn ≺ zn. Since
xn, yn, zn ∈ K+(p), by transitivity, xn ≺ zn for sufficiently large n. We claim that
x ≺ z. Let x be not in K−(z). Then as K−(z) is closed,using local compactness,
there exists a compact neighbourhood N of x such that N ∩ K−(z) = ∅, and so, z is
not in K+(N). Now as V is globally hyperbolic and N is compact, K+(N) is closed.
Hence, there exists a K-convex neighbourhood N

′
of z such that N

′ ∩ K+(N) = ∅,
which is a contradiction as xn ≺ zn for large n. Hence, x ≺ z. Thus, cl(int (K+(p)) is
closed with respect to transitivity. Since, by definition, K+(p) is the smallest closed set
which is transitive, we get, K+(p) ⊆ cl(int (K+(p)). Hence K+(p) = cl(int (K+(p)).
Similarly, K−(p) = cl(int (K−(p)). �

Theorem 3.10. If V is a globally hyperbolic C0-space-time then int (K±(x)) = I±(x),

x ∈ V .

Proof. Let V be globally hyperbolic and x ∈ V . That I+(x) ⊆ int (K+(x)) is obvious
by definition of K+(x). To prove the reverse inclusion, we prove that, if x ≺ y then
there exists a K-causal curve from x to y and if y ∈ int (K+(x)), then this curve must
be a future-directed time-like curve.

Let x ≺ y and there is no K-causal curve from x to y. Then image of [0,1] will not
be connected, compact or linearly ordered. This is possible, only when a point or a set
of points has been removed from the compact set K+(x) ∩ K−(y), that is, when some
of the limit points have been removed from this set, which will imply that this set is not
closed.

But, since V is globally hyperbolic, K+(x) ∩ K−(y) is compact and hence closed.
Hence, there must exist a K-causal curve from x to y.

Suppose, y ∈ int (K+(x)). Then, there exists a neighbourhood I+(p) ∩ I−(q) of
y such that y ∈ I+(p) ∩ I−(q) ⊆ K+(x). To show that a K-causal curve from x to y

is time-like, it is enough to prove that x and y are not null-related, that is, there exists a
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non-empty open set in K+(x) ∩K−(y).
Consider, I+(p)∩ I−(q)∩ I+(x)∩ I−(y), which is open. Take any point say z, on

the future-directed time-like curve from p to y. Then, z ∈ I+(p) ∩ I−(q) ∩ I+(x) ∩
I−(y) ⊆ K+(x) ∩ K−(y). (Here, z ∈ I+(x) because, if x and z are null-related then
K+(x) ∩K−(z) will not contain an open set. But I+(p) ∩ I−(z) ⊆ K+(x) ∩K−(z)).
That is, K+(x) ∩ K−(y) has a non-empty open subset. Hence, x and y are not null-
related, and so, the K-causal curve from x to y is time-like. That is, y ∈ I+(x). Thus,
int (K+(x)) ⊆ I+(x) which proves that int (K+(x)) = I+(x). Similarly, we can prove
that int (K−(x)) = I−(x).

We now discuss important contribution by Minguzzi [12]. We recall that, (M, g) is
stably causal if there is g

′
> g with (M, g

′
) causal. Here g

′
> g if the light cones of

g
′

are everywhere strictly larger than those of g. Equivalence of K-causality and stable
causality uses the concept of compact stable causality introduced in [11]. A space-time
is compactly stably causal if for every compact set, the light cones can be widened on
the compact set while preserving causality. In [12], Minguzzi proved that K-causality
implies compact stable causality, and he also gave examples which showed that the two
properties differ. It will not be out of place here to mention relationship between stable
causality, Seifert future J+s (x), almost future A+(x) and smooth and temporal time
functions.

For detailed discussion of these concepts, we refer the reader to [6] and a more recent
review by M. Sanchez [35]. Seifert future is defined as

J+s (x) =
⋂
g
′
>g

J+(x, g
′
).

Then, J+s is closed, transitive and contains J+. The space-time is stably causal if and
only if J+s is anti-symmetric and hence a partial ordering on M. (for proof, we refer to
Seifert [36]). �

Another causality condition related to Seifert future is Almost future [37], which is
defined as follows:
An event x almost causally precedes another event y, denoted by xAy, if for all z ∈
I−(x), I+(z) ⊆ I+(y). We now define A+(x) = {y ∈ M/xAy}. A−(x) is defined
similarly. It is clear that y ∈ A+(x) if and only if x ∈ A−(y). A space-time is called
W-causal if x ∈ A+(y) and y ∈ A+(x) implies x = y for all x, y ∈ M .

It is proved in [6] [Prop. 4.12] that the almost future A+(x) is closed in the manifold
topology for all x ∈ M . Moreover [Prop.4.15], for all x ∈ M, A+(x) ⊆ J+S . In general,
stable causality implies W-causality, though converse is not always true. Also, there is
an interesting relationship between stable causality and existence of time functions.

We give the following definition: Let (M, g) be a space-time. A (non-necessarily
continuous) function t : M → R is:

(i) A generalized time function if t is strictly increasing on any future-directed causal
curve γ .
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(ii) A time function if t is a continuous generalized time function.

(iii) A temporal function if t is a smooth function with past-directed time-like gradient
∇t .

Then, we have the following theorem:

Theorem 3.11. For a space-time (M, g) the following properties are equivalent:

(i) To be stably causal.

(ii) To admit a time function t

(iii) To admit a temporal function T

See [35] for the proof and more detailed discussion on Causal hierarchy. See also Joshi
[6], section 4.6, for a general discussion on causal functions and relationship with stably
causal space-times. Coming back to relation K+, we recall that K+ is the smallest
closed and transitive relation which contains J+. A space-time is K-causal if K+ is anti-
symmetric. By definition, K+ is contained in J+S , but they do not coincide. However,
K-causality is equivalent to stable causality and in this case K+ = J+S . In [12], Minguzzi
proves the equivalence of K-causality and stable causality. For this, he develops a good
deal of new terminology and proves a series of lemmas, and uses results proved in earlier
papers [11, 38, 39]. Once this equivalence is proved, it also follows that in a K-causal
space-time, K+ relation coincides with the Seifert relation, as mentioned above.

This equivalence, which follows after a laborious work extended over a series of four
papers, considerably simplifies the hierarchy of Causality conditions, which now reads
as:

Global hyperbolicity ⇒ Stably causal ⇔ K-causality ⇒ Strong causality
⇒ K-Distinguishing.

3.2. Causal Groups and Causal Topology

We now discuss causal groups and causal topology and then compare these notions with
those in section 2. If Rn is a directed set with respect to a certain partial ordering relation
‘≥’ of Rn, then such a relation is called a Causal relation. Thus in a globally hyperbolic
space-time (or in a Minkowski space time) J+ and K+ are causal relations (In a C2

globally hyperbolic space-time, J+ = K+, whereas in a C0 - globally hyperbolic space-
time, only K+ is valid). The Causal group G relative to causal relation is then defined
as the group of permutations f : Rn → Rn which leaves the relation ‘≥’ invariant. i.e.
f (x) ≥ f (y) if and only if x ≥ y. Such maps are called causal maps. They preserve
causal order. These maps are special cases of cone preserving maps defined in section 2.

We define the K-causal map and discuss their properties briefly. A K-causal map is
a causal relation which is a homeomorphism between the two topological spaces and at
the same time preserves the order with respect to K+. To define it, we first define an
order preserving map with respect to K+:
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Definition 3.12. Let V and W be C0-space-times. A mapping f : V → W is said to be
order preserving with respect to K+ or simply order preserving if whenever p, q ∈ V

with q ∈ K+(p), we have f (q) ∈ K+(f (p)). i.e., p ≺ q implies f (p) ≺ f (q).

Definition 3.13. Let V and W be C0-space-times. A homeomorphism f : V → W is
said to be K-causal if f is order preserving.

Remark 3.14. In general K-causal maps and causal maps defined by A. Garcia-Parrado
and J.M. Senovilla [31, 32] are not comparable as r ∈ K+(p) need not imply that
r ∈ I+(p) (refer figure 1 of [9]).

Using the definition of K-causal map, we now prove a series of properties which
follow directly from the definition. We give their proofs for the sake of completeness:

Proposition 3.15. A homeomorphism f : V → W is order preserving iff

f ((K+(x)) ⊆ K+(f (x)), ∀x ∈ V.

Proof. Let f : V → W be an order preserving homeomorphism and let x ∈ V . Let
y ∈ f (K+(x)). Then y = f (p), x ≺ p which implies f (x) ≺ f (p) as f is order
preserving. i.e., f (x) ≺ y or y ∈ K+(f (x)).
Hence f (K+(x)) ⊆ K+(f (x)), ∀x ∈ V .
Conversely letf : V → W be a homeomorphism such thatf ((K+(x)) ⊆ K+(f (x)), x ∈
V .
Let p ≺ q. Then f (q) ∈ f (K+(p)). By hypothesis, this gives f (q) ∈ K+(f (p)).
Hence f (p) ≺ f (q). Thus if f is a K-causal map then f (K+(x)) ⊆ K+(f (x)), ∀x ∈
V . �

Similarly we have the property:

Proposition 3.16. If f : V → W be a homeomorphism then f−1 is order preserving
iff K+(f (x)) ⊆ f ((K+(x)), x ∈ V .

Proof. We now define, for S ⊆ V, K+(S) =
⋃
x∈S

K+(x). �

In general, K+(S) is neither open nor closed. We shall show that in a globally
hyperbolic C0 space-time, if S is compact, then K+(S) is closed. However at present,
we can prove the following property:

Proposition 3.17. If f : V → W is an order preserving homeomorphism then
f ((K+(S)) ⊆ K+(f (S)), S ⊆ V .

Proof. If f : V → W be an order preserving homeomorphism and S ⊆ V then by
definition, K+(S) =

⋃
x∈S

K+(x). Let y ∈ f (K+(S)). Then there exists x in S such that
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y ∈ f (K+(x)). This gives y ∈ K+(f (x)).
i.e., y ∈ K+(f (S)). Hence f (K+(S)) ⊆ K+(f (S)). �

Analogously we have,

Proposition 3.18. If f : V → W be a homeomorphism, and f−1 is order preserving
then K+(f (S)) ⊆ f (K+(S)), S ⊆ V .

We know that causal structure of space-times is given by its conformal structure.
Thus, two space-times have identical causality properties if they are related by a confor-
mal diffeomorphism. Analogously, we expect that a K-conformal map should preserve
K-causal properties. Thus we define a K-conformal map as follows.

Definition 3.19. A homeomorphism f : V −→ W is said be K-conformal if both f

and f−1 are K-causal maps.

Remark 3.20. A K-conformal map is a causal automorphism in the sense of E.C. Zeeman
[40].

This definition is similar to chronal / causal isomorphism of Zeeman [40], Joshi [6]
and Garcia–Parrado and Senovilla [31, 32].

Combining the above properties, we have the following:

Proposition 3.21. If f : V → W is K-conformal then f (K+(x)) = K+(f (x)),

∀x ∈ V .

By definition, K-conformal map will preserve different K-causality conditions. If a
map is only K-causal and not K-conformal, then we have the following properties:

Proposition 3.22. If f : V → W is a K-causal mapping and W is K-causal, so is V.

Proof. Let f : V → W be a K-causal map and W be K-causal. Let p ≺ q and
q ≺ p, p, q ∈ V . Then f (p), f (q) ∈ W such that f (p) ≺ f (q) and f (q) ≺ f (p) as
f is order preserving. Therefore f (p) = f (q) since W is K-causal. Hence p = q. �

Analogous result would follow for f−1.
In addition, a K-causal mapping takes K-causal curves to K-causal curves. This is

given by the property:

Proposition 3.23. If V be a K-causal space-time and f : V → W be a K-causal
mapping, then f maps every K-causal curve in V to a K-causal curve in W.

Proof. Let f : V → W be a K-causal map. Therefore f is an order preserving homeo-
morphism. Let 
 be a K-causal curve in V. Then 
 is connected, compact and linearly
ordered. Since f is continuous, it maps a connected set to a connected set and a compact
set to a compact set. Since f is order preserving and 
 is linearly ordered, f (
) is a
K-causal curve in W. Analogous result would follow for f−1. �
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From the above result we can deduce the following:

Proposition 3.24. If f be a K-causal map from V to W, then for every future directed
K-causal curve 
 in V, any two points x, y ∈ f (
) satisfy x ≺ yory ≺ x.

Definition 3.25. Let V and W be two C0-space-times. Then W is said to be K-causally
related to V if there exists a K-causal mapping f from V to W. i.e., V ≺f W .

The following property follows easily from this definition, which shows that the
relation ‘ ≺′

f is transitive also.

Proposition 3.26. If V ≺f W and W ≺g U then V ≺g◦f U .

Proposition 3.27. If f : V −→ W is a K-causal map then C ⊆ V is K-convex if f (C)

is a K-convex subset of W.

Proof. Let f : V −→ W be K-causal and f (C) be a K-convex subset of W. Let p, q ∈ C

and r ∈ V such that p ≺ r ≺ q. Since f is order preserving we get f (p) ≺ f (r) ≺ f (q)

where f (p), f (q) ∈ f (C) and f (r) ∈ W . Since f (C) is K-convex, f (r) ∈ f (C). i.e.,
r ∈ C. Hence C is a K-convex subset of V. �

Remark 3.28. Concept of a convex set is needed to define strong causality, as we shall
see below.

We now discuss briefly the algebraic structure of the set of all K-causal maps from
V to V. We define the following:

Definition 3.29. If V is a C0–space–time then Hom(V) is defined as the group consisting
of all homeomorphisms acting on V.

Definition 3.30. If V is a C0-space-time then K(V) is defined as the set of all K-causal
maps from V to V.

Proposition 3.31. K(V) is a submonoid of Hom(V).

Proof. If f1, f2, f3 ∈ K(V ) then f1 ◦ f2 ∈ K(V ). Also, f1 ◦ (f2 ◦ f3) = (f1 ◦ f2) ◦ f3
and identity homeomorphism exists. Hence K(V) is a submonoid of Hom(V).

It is obvious that K(V) is a bigger class than the class of K-conformal maps.
Thus in a C0 globally hyperbolic space-time, every K-causal map f where f−1 is also

order preserving is a causal relation and causal group is the group of all such mapping
which we called K-conformal groups.

In the light of the definition of quasiorder given in section 2, we observe that causal
cones and K-causal cones fall in this category, since causal relation ‘< ’ and K-causal
relation ‘≺ ’ are reflexive and transitive. If we replace quasi-order by a causal relation
(or K-causal relation), then we see that an order preserving map is nothing but a causal
map. Thus an order preserving map is a generalization of a causal map (or K-causal
map). These concepts also appear in a branch of theoretical computer science called



1268 Sujatha Janardhan and R. V. Saraykar

domain theory. Martin and Panangaden [12] and S. Janardhan and Saraykar [10] have
used these concepts in an abstract setting and proved some interesting results in causal
structure of space times. They proved that order gives rise to a topological structure.

As far as the causal topology on Rn is concerned, it is defined as the topology
generated by the fundamental system of neighbourhoods containing open ordered sets
M(a, b) defined for any a, b ∈ Rn with b − a ∈ intC as: M(a, b) = {y ∈ Rn/b −
y, y−a ∈ intC}. Gheorghe and Mihul [29] describe ‘causal topology’on Rn and prove
that the causal topology of Rn is equivalent to the Euclidean topology. Causal group G

is thus comparable to conformal group of space-time under consideration. Further any
f ∈ G is a homeomorphism in causal topology and hence it is a homeomorphism in
Euclidean topology.

If C is a Minkowski cone as discussed in the above example, then Zeeman [40]
has proved that G is generated by translations, dilations and orthochronous Lorentz
transformations of Minkowski space Rn(n = 4). We can say more for the causal group
G of Minkowski space. Let G0 = {f ∈ G/f (0) = 0}. Then G0 contains the identity
homeomorphism. Gheorghe and Mihul [29] proved thatG is generated by the translations
of Rn and by linear transformation belonging to G0. Hence G is a subgroup of the affine
group of Rn. This is the main result of [29]. �

Let G
′
0 = G0 ∩ SL(n, R). Then G

′
0 is the orthochronus Lorentz group under the

norm

‖ y ‖=
[

q∑
i=1

| yi |2
] 1

2

for y ∈ Rq, y = (y1, y2, · · · , yq).

For

‖ y ‖=
[

q∑
i=1

| yi |α
] 1

α

, α > 2, G
′
0

is the discrete group of permutations and the symmetries relative to the origin of the
basis vectors of Rq . The factor group G0/G

′
0 is the dilation group of Rn. Also, G is the

semi-direct product of the translation group with the subgroup G
′
0 of SL(n,R). Moreover

G
′
0 is a topological subgroup of SL(n,R). Similar results have been proved by Borchers

and Hegerfeldt [41]. Thus we have,

Theorem 3.32. Let M denote n-dimensional Minkowski space, n ≥ 3 and let T be a 1
- 1 map of M onto M . Then T and T −1 preserve the relation (x − y)2 > 0 if and only
if they preserve the relation (x − y)2 = 0. The group of all such maps is generated by

(i) The full Lorentz group (including time reversal)

(ii) Translations of M

(iii) Dilations (multiplication by a scalar)
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In our terminology, T is a causal map. In the same paper [41], the following theorem is
also proved.

Theorem 3.33. Let dimM ≥ 3, and let T be a 1 - 1 map of M onto M , which maps
light like lines onto (arbitrary) straight lines. Then T is linear.

This implies that constancy of light velocity c alone implies the Poincare group upto
dilations.

Thus, for Minkowski space, things are much simpler. For a space-time of general
relativity (a Lorentz manifold) these notions take a more complicated form where partial
orders are J+ or K+.

4. Causal Orientations and order theoretic approach to
Global Hyperbolicity

4.1. Causal Orientations

In this section, we discuss briefly the concepts of Causal orientations, causal structures
and causal intervals which lead to the definition of a ‘Globally hyperbolic homogeneous
space’. These notions cover Minkowski Space and homogeneous cosmological models
in general relativity. We also discuss domain theoretic approach to causal structure of
space-time and comment on the parallel concepts appearing in these approaches.

Let M be a C1 (respectively smooth) space-time. For m ∈ M, Tm(M) denotes the
tangent space of M at m and T(M) denotes the tangent bundle of M . The derivative of a
differentiable map f : M → N at m will be denoted by dmf : TmM → Tf (m)N . A C1

(respectively smooth) causal structure on M is a map which assigns to each point m ∈ M

a nontrivial closed convex cone C(m) in TmM and it is C1(smooth) in the following sense:
We can find an open covering {Ui}i∈I of M , smooth maps φi : Ui×Rn → T (M)with

φi(m, M) ∈ Tm(M) and a cone C in Rn such that C(m) = φi(m, C).
The causal structure is called generating (respectively proper, regular) if C(m) is

generating (proper, regular) for all m. A map f : M → M is called causal if
dmf (C(m)) ⊂ C(f (m)) for all m ∈ M . These definitions are obeyed by causal structure
J+ in a causally simple space-time and causal maps of García-Parrado and Senovilla
[32]. If we consider C0-Lorentzian manifold with a C1-metric so that we can define
null cones, then these definitions are also satisfied by causal structure K+ and K-causal
maps. Thus the notions defined above are more general than those occurring in general
relativity at least in a special class of space-times. Rainer [42] called such a causal
structure an ultra weak cone structure on M where m ∈ intM .

We now define G-invariant causal structures where G is a Lie group and discuss some
properties of such structures. If a Lie group G acts smoothly on M via (g, m) �→ g.m.,
we denote the diffeomorphism m �→ g.m by lg.

Definition 4.1. Let M be a manifold with a causal structure and G a Lie group acting on
M . Then the causal structure is called G-invariant if all lg, g ∈ G, are causal maps. If H
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is a Lie subgroup of G and M = G/H is homogeneous then a G-invariant causal structure
is determined completely by the cone C = C(0) ⊂ ToM , where o = H ∈ G/H .
Moreover C is proper, generating etc if and only if this holds for the causal structure.
We also note that C is invariant under the action of H on To(M) given by h �→ d0lh.
On the other hand, if C ∈ ConeH (To(M)),then we can define a field of cones by
M → Tα.0(M) : aH �→ C(αH) = d0la(C).

This cone field is G-invariant, regular and satisfies C(0) = C. Moreover the mapping
m �→ C(m) is also smooth in the sense described above. If this mapping is only
continuous in the topological sense, for all m in M, then Rainer [42] calls such cone
structure, a weak local cone structure on M .
We have the following theorem.

Theorem 4.2. Let M = G/H be homogeneous. Then C �→ (αH �→ d0la(C)) defines
a bijection between ConeH (To(M)) and the set of G-invariant, regular causal structures
on M .

We call a mapping ν : [a, b] → M as absolutely continuous if for any coordinate
chart φ : U → Rn, the curve η = φ ◦ ν : ν−1(U) → Rn has absolutely continuous
coordinate functions and the derivatives of these functions are locally bounded.

Further, we define a C-causal curve: Let M = G/H and C ∈ ConeG(ToM). An
absolutely continuous curve ν : [a, b] → M is called C - causal ( Cone causal or conal)
if ν

′
(t) ∈ C(ν(t)) whenever the derivative exists.
Next, we define a relation ‘≤s’ (s for strict) of M by m ≤s n if there exists a C-causal

curve ν connecting m with n. This relation is obviously reflexive and transitive. Such
relations are called causal orientations or quasi-orders. They give rise to causal cones
as we saw in section 2.

Note: A reader who is familiar with the books by Penrose [30], Hawking and Ellis [4]
or Joshi [6] will immediately note that the above relation is our familiar causal order J±
in the case when M is a space-time in general relativity.

We ask the question: Which of the space-times M can be written as G/H? Gödel
universe, Taub universe and Bianchi universe are some examples of such space-times.
They are all spatially homogeneous cosmological models. Isometry group of a spatially
homogeneous cosmological model may or may not be abelian. If it is abelian, then
these are of Bianchi type I, under Bianchi classification of homogeneous cosmological
models. Thus above discussion applies to such models.

As an example to illustrate above ideas, we again consider a finite dimensional vector
space M and let C be a closed convex cone in M . Then we define a causal Aut(C) -
invariant orientation on M by u ≤ v iff v − u ∈ C. Then ‘≤’ is antisymmetric iff C is
proper. In particular H+(n, R) defines a GL(n, R)-invariant global ordering in H(n,R).
Here H(n,R) are n × n real orthogonal matrices (Hermitian if R is replaced by C) and
H+(n, R) = {X ∈ H(m, R)/X is positive definite } is an open convex cone in H(n,R).
(the closure of H+(n, R) is the closed convex cone of all positive semi definite matrices in
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H(n,R)). Also, the light cone C ⊂ Rn+1 defines a SOO(n, 1)-invariant ordering in Rn+1.
The space Rn+1 together with this global ordering is the (n+1)-dimensional Minkowski
space.

Going back to the general situation we note that in general, the graph M≤s
=

{(m, n) ∈ M × M/m ≤s n} of ‘≤s’ is not closed in M × M . However, if we define
m ≤ n ⇔ (m, n) ∈ M≤s

, then it turns out that ‘≤’ is a causal orientation. This can be
seen as follows:

‘≤’ is obviously reflexive. We show that it is transitive: Suppose m ≤ n ≤ p and let
mk, nk, n

′
k, pk be sequences such that mk ≤s nk, n

′
k ≤s pk, mk → m, nk → n, n

′
k → n

and pk → p. Now we can find a sequence gk in G converging to the identity such that
n
′
k = gknk. Thus gkmk → m and gknk ≤s pk implies m ≤ p.

The above result resembles the way in which K+ was constructed from I+. The
following definitions are analogous to I±, J± or K± and so is the definition of interval
as I+(p) ∩ I−(q)(J+(p) ∩ J−(q) or K+(p) ∩K−(q)):

Given any causal orientation ‘≤’ on M , we define for A ⊂ M ,
↑ A = {y ∈ M/∃a ∈ A with a ≤ y} and
↓ A = {y ∈ M/∃a ∈ A with y ≤ a}.
Also, we write ↑ x =↑ {x} and ↓ x =↓ {x}.
The intervals with respect to this causal orientation are defined as
[m, n]≤ = {z ∈ M/m ≤ z ≤ n} =↑ m ∩ ↓ n .
Finally we introduce some more definitions.

Definition 4.3. Let M be a space-time.

(1) a causal orientation ‘≤’ on M is called topological if its graph M≤ in M ×M is
closed.

(2) a space (M,≤) with a topological causal orientation is called a causal space. If
‘≤’ is, in addition, antisymmetric, that is a partial order, then (M,≤) is called
globally ordered or ordered.

(3) Let (M,≤) and (N,≤) be two causal spaces and let f : M → N be continuous.
Then f is called order preserving or monotone if m1 ≤ m2 ⇒ f (m1) ≤ f (m2).

(4) Let G be a group acting on M . Then a causal orientation ≤ is called G-invariant
if m ≤ n ⇒ a.m ≤ a.n, ∀a ∈ G.

(5) A triple (M,≤, G) is called a Causal G-Manifold or causal if ‘≤’ is a topological
G-invariant causal orientation.

Thus referring to partial order K+, we see, in the light of above definitions (1) and
(2), that ≤K is topological and (M,≤K) is a causal space. A K-causal map satisfies
definition (3).
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For a homogeneous space M = G/H carrying a causal orientation such that (M,≤
, G) is causal, the intervals are always closed subsets of M . If the intervals are compact,
we say that M = G/H is globally hyperbolic. We use the same definition for a space-
time where intervals are J+(p) ∩ J−(q). Thus globally hyperbolic space-times can be
defined by using causal orientations for homogeneous spaces. In this setting, intervals
are always closed, as in causally continuous space-times.

4.2. Domain Theory and Causal Structure

As the last part of our article, we discuss the central concepts and definitions of domain
theory, as we observe that these concepts are related to causal structure of space-time
and also to space-time topologies.

The relations < and � discussed in section 3 have been generalised to abstract
orderings using the concepts in Domain Theory and also many interesting results have
been proved related to causal structures of space-time in general relativity. For definitions
and preliminary results in domain theory, we follow Abramsky and Jung [43] and Martin
and Panangaden [13]. We have expanded some of the proofs which follow in this section,
as it gives a better understanding of these concepts and their applications.

Definition 4.4. A poset is defined as a partially ordered set, i.e. a set together with a
reflexive, anti-symmetric and transitive relation.

Domain theory deals with partially ordered sets to model a domain of computation
and the elements of such an order are interpreted as pieces of information or results of
a computation where elements of higher order extend the information of the elements
below them in a consistent way.

Definition 4.5. Let (P,�) be a partially ordered set. An upper bound of a subset S of
a poset P is an element b of P, such that x � b, ∀x ∈ S. The dual notion is called lower
bound.

A concept that plays an important role in domain theory is the one of a directed subset
of a domain, i.e. of a non-empty subset in which each two elements have an upper bound.

Definition 4.6. A nonempty subset S ⊆ P is directed if for every x, y in S, ∃z ∈ S  :
x, y � z. The supremum of S ⊆ P is the least of all its upper bounds provided it exists
and is denoted by

⊔
S.

This means that every two pieces of information with in the directed subset are
consistently extended by some other element in the subset.

A nonempty subset S ⊆ P is filtered if for every x, y in S ,∃z ∈ S  : z � x, y. The
infimum of S ⊆ P is the greatest of all its lower bounds provided it exists and is denoted
by

∧
S.

In the partially ordered set (R,≤) where R is the set of real numbers and ≤ denotes
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the relation less than or equal to, the subset [0 , 1] is directed with supremum 1 and is
filtered with infimum 0.

Remark 4.7.

(i) ∀x ∈ P , {x} is a directed set.

(ii) In the theory of metric spaces, sequences play a role that is analogous to the role
of directed sets in domain theory in many aspects.

(iii) In the formalization of order theory, limit of a directed set is just the least upper
bound of the directed set. As in the case of limits of sequences,least upper bounds
of directed sets do not always exist.

The domain in which all consistent specifications converge is of special interest and
is defined as follows:

Definition 4.8. A dcpo(directed complete partial order) P is a poset in which every
directed subset has a supremum.

The poset (R,≤) is not a dcpo, as the directed subset (0,∞) does not have a supre-
mum.

Using partial order, some topologies can be derived. For example,

Definition 4.9. A subset U of a poset P is Scott open if

(i) U is an upper set: i.e. x ∈ U and x � y ⇒ y ∈ U, and

(ii) U is inaccessible by directed suprema: i.e. for every directed S ⊆ P with a
supremum,

⊔
S ∈ U ⇒ S ∩ U �= φ.

The collection of all Scott open sets on P is called the Scott topology. For the poset
(R,≤), (1,∞) is Scott open. A more elaborate approach leads to the definition of order
of approximation denoted by ‘ �′ which is also called the way - below relation.

Definition 4.10. For elements x, y of a poset, x � y iff for all directed sets S with a
supremum, y �

⊔
S ⇒ ∃s ∈ S  : x � s. Define, ⇓ x = {a ∈ P/a � x} and

⇑ x = {a ∈ P/x � a}.
In an ordering of sets, an infinite set is way above any of its finite subsets. On the

other hand, consider the directed set of finite sets {0}, {0, 1}, {0, 1, 2}.... The supremum
of this set is the set N of all natural numbers. i.e., no infinite set is way below N.

Definition 4.11. An element x in a poset P is said to be compact if x � x.

Proposition 4.12. x � y ⇒ x � y.

Proof. Let x � y. Consider the directed set {y}. Since
⊔
{y} = y, by definition x � y.

�
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Proposition 4.13. The relation ‘ �′ is not necessarily reflexive.

Proof. Let S be a directed set with x =
⊔

S and x is not in S. Then x � s, s ∈ S is
false. �

Proposition 4.14. x � y � z ⇒ x � z.

Proof. Let S be a directed set with z �
⊔

S. Now y � z ⇒ ∃ s ∈ S such that y � s.

Since x � y, we have x � s. This holds for each directed set with
⊔

S # z. Hence
x � z.

Let x � y � z. If S is a directed set with z �
⊔

S then y �
⊔

S. Hence
x � y ⇒ ∃s ∈ S such that x � s. Thus x � z. �

Definition 4.15. For a subset X of a poset P , define ↑ X := {y ∈ P/∃x ∈ X, x � y}
and ↓ X := {y ∈ P/∃x ∈ X, y � x} Then, ↑ x =↑ {x} and ↓ x =↓ {x} for x ∈ X.

In (R,≤), ↑ {x} = [x,∞) and ↓ {x} = (−∞, x] A subset of elements which is
sufficient for getting all other elements as least upper bounds can be defined as follows:

Definition 4.16. A basis for a poset P is a subset B such that B∩ ⇓ x contains a directed
set with supremum x for all x in P .

A poset is continuous if it has a basis. A poset is ω-continuous if it has a countable
basis. Continuous posets have an important property that they are interpolative.

Proposition 4.17. ⇓ x is a directed set in a continuous poset P .

Proof. Let B be a basis in P . Then B∩ ⇓ x is a directed set with x =
⊔

S. Let
y, z ∈⇓ x. Then y � x and z � x. Now y � x implies ∃s1 ∈ S such that y � s1.
z � x implies ∃s2 ∈ S such that z � s2. Now both s1, s2 ∈ S and S is directed.
Therefore, ∃s ∈ S such that s1, s2 � s. Hence s ∈⇓ x and y � s, z � s. Thus ⇓ x is a
directed set. �

Proposition 4.18.
⊔

⇓ x = x, in a continuous poset P .

Proof. For every y ∈⇓ x, y � x. Therefore, y � x. i.e. x is an upper bound of ⇓ x.
Let a be any other upper bound of ⇓ x. Since P is a continuous poset, B∩ ⇓ x contains
a directed set S with

⊔
S = x. Obviously, S ⊆⇓ x. Hence

⊔
S �

⊔
⇓ x � any

upper bound of ⇓ x. Therefore, x � a. Thus x =
⊔

⇓ x where P is a continuous
poset. �

Proposition 4.19. If x � y in a continuous poset P , then there is z ∈ P with x � z � y

(that is, continuous posets are interpolative ). Actually a more general result is true
namely, if G is a finite subset of P with G � y, i.e. ∀x ∈ G, x � y, then ∃z ∈ P such
that G � z � y.
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Proof. Let A = {a ∈ P/∃ a
′ ∈ P with a � a

′ � y}. We claim that A is non-empty.
Consider x ∈ M, x � y. Now B∩ ⇓ x contains a directed set S with

⊔
S = x. Let

a ∈ S. Then a ∈⇓ x. Therefore, a � x and x � y. Hence a ∈ A.
Now we claim that A is a directed set. Let a, b ∈ A. Then ∃a′

, b
′ ∈ P such that

a � a
′ � y and b � b

′ � y. Since a
′
, b

′ ∈⇓ y and⇓ y is a directed set, ∃c′ ∈⇓ y such
that a

′
, b

′ � c
′
, c

′ � y. Using directedness of⇓ c
′
, we have, a � a

′ � c
′
, b � b

′ � c
′
.

Therefore, a, b ∈⇓ c
′
and hence, ∃c ∈⇓ c

′  : a, b � c.
As c � c

′
and c

′ � y, we have c ∈⇓ y. Thus, given a, b ∈ A, ∃c ∈ A  : a, b � c.
Hence A is a directed set.

We now show that y =
⊔

⇓ y =
⊔

A. Let y
′ � y. Then for each r ∈⇓ y

′
,

r � y
′ � y. Therefore, r ∈ A which implies ⇓ y

′ ⊆ A. Hence
⊔

⇓ y
′ �

⊔
A. i.e.,

y
′ =

⊔
⇓ y

′ �
⊔

A. This holds holds for each y
′ � y. Since B∩ ⇓ y contains a

directed set S with
⊔

S = y, for each y
′ ∈ S, y

′ � y. Therefore, y
′ �

⊔
A. Hence⊔

S �
⊔

A. But
⊔

S = y. Therefore, y �
⊔

A. But by definition, each element of

A is below y. Therefore,
⊔

A � y. Hence y =
⊔

A.

For each x ∈ G, x � y =
⊔

A, and A is a directed set. So, by definition of
′ �′, ∃zx ∈ A, : x � zx . Since G is finite, zx in A are finite in number. So, by
directedness of A, ∃z′ ∈ A  : x � z

′∀x ∈ G. Now z
′ ∈ A ⇒ ∃z  : z

′ � z � y.
Therefore, x � z � y, ∀x ∈ G. i.e. G � z � y. �

Then we have,

Theorem 4.20. The collection {⇑ x/x ∈ P } is a basis for the Scott topology on a
continuous poset.

Proof. We first show that ⇑ x is Scott open for each x in P . Let y ∈⇑ x, y � z. Then
x � y � z. So, we have x � z and hence z ∈⇑ x. Thus ⇑ x is an Upper set. Let S be
any directed set with a supremum such that

⊔
S ∈⇑ x. Let y =

⊔
S. Thus y $ x.

By interpolativeness of ‘�′, ∃z ∈ P  : y $ z $ x, z � y and y =
⊔

S.
Therefore ∃s ∈ S  : z � s. Then x � z � s and hence x � s. Further s ∈ S. So,

s ∈⇑ x and s ∈ S. Therefore, S∩ ⇑ x �= φ. Thus ⇑ x is Scott open for each x ∈ P . Let
x ∈ P , and U be a Scott open set with x ∈ U . Consider B∩ ⇑ x. It contains a directed
set say S with

⊔
S = x. Since x ∈ U , it follows that S ∩ U �= φ. Let y ∈ S ∩ U .

Obviously x ∈⇑ y. Let z ∈⇑ y. Since y ∈ U and y � z we must havez ∈ U . Thus
for each x ∈ P and Scott open set U , x ∈ U, ∃y  : x ∈⇑ y and ⇑ x ⊆ U . Hence,
{⇑ x/x ∈ P } forms a basis for the Scott topology. �

Lawson topology can be defined as,

Definition 4.21. The Lawson topology on a continuous poset P has as a basis all sets of
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the form ⇑ x ∼↑ F , for F ⊆ P finite.

Definition 4.22. A continuous poset P is bicontinuous if for all x, y in P

x � y iff for all filtered S ⊆ P with an infimum,
∧

S � x ⇒ ∃s ∈ S  : s � y and for
each x ∈ P , the set ⇑ x is filtered with infimum x.

Definition 4.23. A domain is a continuous poset which is also a dcpo.

Proposition 4.24. On a bicontinuous poset P , sets of the form (a, b) := {x ∈ P/a �
x � b} form a basis for a topology. This topology is called the interval topology.

Proof. For any x ∈ P,⇑ x is filtered with infimum x and⇓ x is directed with supremum
x. Due to bicontinuity,⇑ x, ⇓ x are non-empty. Let a ∈⇓ x, b ∈⇑ x. Then a � x � b.
Let x ∈ P be such that a � x � b and a1 � x � b1. Then a, a1 ∈⇓ x. Since ⇓ x

is a directed set, ∃a2 ∈⇓ x  : a, a1 � a2. Similarly, b, b1 ∈⇑ x which is filtered.
Therefore, ∃b2 ∈⇑ x such that b2 � b, b1. Obviously, a2 � x � b2. Further, if y is
such that a2 � y � b2, then a � a2 � y and y � b2 � b ⇒ a � y � b. i.e.,
y ∈ a � · · · � b. Similarly, y ∈ a1 � · · · � b1. Hence (a, b) forms a topology on P .
We recall some more definitions regarding causal structure of space-time and elaborate
and modify proofs of certain theorems regarding causality conditions. �

Definition 4.25. The relation J+ is defined as p � q ≡ q ∈ J+(p).

Proposition 4.26. Let p, q, r ∈ M . Then

(i) The sets I+(p) and I−(p) are open.

(ii) p � q and r ∈ I+(q) ⇒ r ∈ I+(p)

(iii) q ∈ I+(p) and q � r ⇒ r ∈ I+(p)

(iv) I+(p) = J+(p) and I−(p) = J−(p).

We assume strong causality which can be characterized as follows:

Theorem 4.27. A space-time M is strongly causal iff its Alexandrov topology is Haus-
dorff iff its Alexandrov topology is the manifold topology.

Definition 4.28. A space-time M is globally hyperbolic if it is strongly causal and if
↑ a∩ ↓ b is compact in the manifold topology, for all a, b in M .

Lemma 4.29. If (xn) is a sequence in a globally hyperbolic space-time M with xn � x

for all n, then
lim

n→∞ xn = x ⇒
⊔
n≥1

xn = x.

Lemma 4.30. For any x ∈ M, I−(x) contains an increasing sequence with supremum
x.
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Proposition 4.31. In a globally hyperbolic space-time M, x � y ⇔ y ∈ I+(x) for all
x, y in M . Here M is a bicontinuous poset.

Proof. Let x � y. Then, there is an increasing sequence (yn) in I−(y) with y =
⊔

yn.

Since x � y, there exists n such that x � yn. Hence, x � yn and yn ∈ I−(y) ⇒ x ∈
I−(y). That is, y ∈ I+(x).

Let y ∈ I+(x). To prove x � y, we have to prove that if S is any directed set with
y �

⊔
S, then ∃s ∈ S such that x � s. Since y �

⊔
S,

⊔
S ∈ J+(y) , we have

y ∈ I+(x) and hence
⊔

S ∈ I+(x).

Case 1: If
⊔

S ∈ S , then we take s =
⊔

S, and hence the proof.

Case 2: Let
⊔

S is not in S.Then S must be infinite. Let
⊔

S = z.Consider s1, s2 ∈ S.
Then we can find s3 such that s1 � s3, s2 � s3. ( If s3 coincides with s1ors2 in that case ,
we have s1 � s2ors2 � s1 ). Consider then another element of S different from s1, s2, s3,
∃s4 ∈ S  : s3 � s4.... We can proceed in this way to get a strictly increasing sequence in
S. If we denote this set by S

′
, then

⊔
S
′ =

⊔
S = z. ( For,

⊔
S
′ =

⊔
S, asS

′ ⊆ S.

If
⊔

S
′ �

⊔
S and

⊔
S
′ �=

⊔
S then either there exists s in S such that

⊔
S
′

and s

are not related or
⊔

S
′ � s and

⊔
S
′ �= s. Both are ruled out as S is a directed set.

Thus , S
′
is a strictly increasing chain in S with

⊔
S
′ =

⊔
S.)

For this S
′ = {s1, s2...}, we consider compact sets J+(si)∩ J−(z). Then, {J+(si)∩

J−(z)} will be a decreasing sequence of compact sets whose intersection is z which
is in the open set I+(x). Hence, for some si, J

+(si) ∩ J−(z) ⊆ I+(x). Otherwise,
from each of the above compact sets we can find xi such that xi is not in I+(x), where
xi is an increasing sequence with z = sup{xi} and the open set I+(x) not intersecting
the sequence. This is not possible. Therefore J+(si) ∩ J−(z) ⊆ I+(x) which implies
si ∈ I+(x) as si � z. i.e. x � si and hence x � y.

The above proof is a modified version of that given in [13]. �

Theorem 4.32. If M is globally hyperbolic then (M,�) is a bicontinuous poset with
�= I+ whose interval topology is the manifold topology.

Causal simplicity also has a characterization in order-theoretic terms.

Theorem 4.33. Let (M,�) be a continuous poset with�= I+. Then the following are
equivalent:

(i) M is causally simple.

(ii) The Lawson topology on M is a subset of the interval topology on M .

We now give definitions and results from a recent article by K. Martin and P. Panan-
gaden [13].
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Definition 4.34. Let (X,≤) be a globally hyperbolic poset. A subset π ⊆ X is a causal
curve if it is compact, connected and linearly ordered. Let π(0) = ⊥ and π(1) = &
where ⊥ and & are the least and greatest elements of π . For P, Q ⊆ X,
C(P, Q) = {π/πcausalcurve, π(0) ∈ P, π(1) ∈ Q}
called the space of causal curves between P and Q.

It is clear that a subset of a globally hyperbolic space-time M is the image of a causal
curve iff it is the image of a continuous monotone increasing π : [0, 1] → M iff it is a
compact connected linearly ordered subset of (M,≤).

Theorem 4.35. If (X,≤) is a separable globally hyperbolic poset, then the space of
causal curves C(P, Q) is compact in the Vietoris topology and hence in the upper topol-
ogy.

This result plays an important role in the proofs of certain singularity theorems in
[5], in establishing the existence of maximum length geodesics in [4] and in the proof of
certain positive mass theorems in [45].

Also, Globally hyperbolic posets are very much like the real line. A well-known
domain theoretic construction pertaining to the real line extends in perfect form to the
globally hyperbolic posets:

Theorem 4.36. The closed intervals of a globally hyperbolic poset X, IX = {[a, b]/a ≤
banda, b ∈ X} ordered by reverse inclusion [a, b] ⊆ [c, d] ≡ [c, d] ⊆ [a, b] form a
continuous domain with [a, b] � [c, d] ≡ a � candd � b. The poset X has a
countable basis iff IX is ω-continuous. Finally, max(IX) � X where the set of maximal
elements has the relative Scott topology from IX.

The observation that the space-time has a canonical domain theoretic model, teaches
that from only a countable set of events and the causality relation, space-time can be
reconstructed in a purely order theoretic manner using domain theory.

In [13], K. Martin and P. Panangaden construct the space-time from a discrete causal
set as follows:

An abstract basis is a set (C,�) with a transitive relation that is interpolative from the
− direction: F � x ⇒ ∃y ∈ C  : F � y � x for all finite subsets F ⊆ C and
all x ∈ F . Suppose, it is also interpolative from the + direction: x � F ⇒ ∃y ∈
C  : x � y � F . Then a new abstract basis of intervals can be defined as, int (C) =
{(a, b)/a � b} =�⊆ C2 whose relation is (a, b) � (c, d) ≡ a � candd � b.

Let IC denote the ideal completion of the abstract basis int (C).

Theorem 4.37. Let C be a countable dense subset of a globally hyperbolic space-time
M and �= I+ be timelike causality. Then max(IC) � M where the set of maximal
elements have the Scott topology.

This theorem is very different because, a process by which a countable set with a
causality relation determines a space, is identified here in abstract terms. The process is



Causal and Topological Aspects in Special and General Theory 1279

entirely order theoretic in nature and space-time is not required to understand or execute
it. In this sense, the understanding of the relation between causality and the topology of
space-time is explainable independently of geometry.

In a C0- globally hyperbolic space-time, we can now extend some of the order
theoretic concepts to K-causality. To generalize some of these concepts in the context
of K-causality, we first prove the following.

Proposition 4.38. In a C0-globally hyperbolic space-times, x � y ⇒ y ∈ K+(x)

where the partial order is ≺= K+.

Proof. Let x � y. Consider intK−(y) which is an open set not containing y. Since
y ∈ K−(y), y is a limit point of intK−(y). Hence there exists a sequence yn in intK−(y)

such that lim yn = y. We can choose yn as increasing sequence. (using second countabil-
ity as in Lemma 4.3 of [13]). Thus sup yn = y. Now {yn} is a directed set with supremum
y. Hence ∃yn in intK−(y) such that x ≺ yn ≺ y, as x � y. Thus y ∈ K+(x).

It must be noted that above analysis does not require any kind of differentiability con-
ditions on a space-time manifold, and results are purely topological and order-theoretic.

�

We also have, analogous to above,

Definition 4.39. ⇓ x = {a ∈ M/a � x} and ⇑ x = {a ∈ M/x � a}.
Since a � x ⇒ a ∈ K−(x), we have,

⇓ x ∈ K−(x) and ⇑ x ∈ K+(x).
We illustrate, for Lawson topology, as to how the concepts above can be generalized

to K-causality.

Proposition 4.40. Lawson topology, in K-sense, is contained in the manifold topology.

Proof. Let us take a basis for Lawson topology as the sets of the form {⇑ x ∼↑ F/F

is finite }. Since F is finite, F is compact in the manifold topology and hence ↑ F is
closed. Since the sets ⇓ x and ⇑ x are open in the manifold topology (in a C0-globally
hyperbolic space-time), ⇑ x ∼↑ F are also open in the manifold topology.

Thus Lawson open sets are open in the manifold topology also and hence the result
follows.

Similar analysis can be given for Scott topology and interval topology also. The
intervals defined above, with appropriate cone structure coincide with causal intervals
and hence so does the definition of global hyperbolicity. When the partial order is J+,
interval topology coincides withAlexandrov topology and as is well-known, in a strongly
causal space-time, Alexandrov topology coincides with the manifold topology. �

5. Concluding Remarks

We note that there are a large number of space-times (solutions of Einstein field equa-
tions) which are inhomogeneous (see Krasinski [46]) and hence do not fall in the above
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class: M = G/H . M.Rainer [42] defines yet another partial order using cones as subsets
of a topological manifold and a differential manifold (space-time) which is a causal rela-
tion in the sense defined above and which is more general than J+. Rainer, furthermore
defines analogous causal hierarchy like in the classical causal structure theory. Of course,
for Minkowski space, the old and new definitions coincide. For a C2-globally hyper-
bolic space-time J+, K+ and Rainer’s relation all coincide, whereas for a C0-globally
hyperbolic space-time, K+ and Rainer’s relation on topological manifold coincide.

Moreover if the cones are characteristic surfaces of the Lorentzian metric, then all
his definitions of causal hierarchy coincide with the classical definitions. (cf theorem 2
of Rainer [42]). For more details on this partial order, we refer the reader to this paper.

B. Carter [47] discusses causal relations from a different perspective and discusses
in detail many features of this relationship. Topological considerations in the light of
time-ordering have been discussed by E.H.Kronheimer [48].

Using cone structure, a Causal Topology on Minkowski space was first discussed by
Zeeman [49] way back in 1967. This topology has many interesting features. At the same
time, it is difficult to handle mathematically because it is not a normal topological space.
Gheorghe and Mihul [29] introduced another topology on Minkowski space by using
causal relation and where it was assumed that a positive cone is closed in the Euclidean
topology. They further proved that this topology coincides with Euclidean topology. R.
Gobel [50] worked out in details many features of Zeeman like topologies in the context
of space-time of general relativity. Around the same time, Hawking, King and McCarty
[51] and Malament [52] worked out interesting features of a topology on space-time in
general relativity using time-like curves. Though this work is mathematically interesting,
it did not receive much response from people working in General Relativity. In 1992, D.
Fullwood [53] constructed another causal topology F from a basis of sets obtained by
taking the union of two Alexandrov intervals < x, y, z >≡< x, y > ∪ < y, z > ∪y.
These sets are not open in the manifold topology since they include the intermediate
point y. F contains information about the space-time dimension and F is Hausdorff iff
the space-time is future and past distinguishing and is moreover, strictly finer than the
manifold topology.

Fullwood showed that F can also be obtained via a causal convergence criterion on
time-like sequences of events. Recently, Onkar Parrikar and Sumati Surya [54] gener-
alized this definition to include all monotonic causal sequences. This gives rise to yet
another causal topology which is denoted by P . They showed that P is strictly coarser
than F and also strictly finer than the manifold topology. The paper by Parrikar and Surya
gives a non-trivial generalization of the MHKM (Malament-Hawking-King-McCarty)
theorem and suggests that there is a causal topology for FPD (Future and Past Distinguish-
ing) space-times which encodes manifold dimension and which is strictly finer than the
Alexandrov topology. The construction uses a convergence criterion based on sequences
of chain-intervals which are the causal analogs of null geodesic segments. They also
show that when the region of strong causality violation satisfies a local achronality con-
dition, this topology is equivalent to the manifold topology in an FPD space-time. This
work is motivated by Sorkin’s Causal sets approach to Quantum Gravity. A somewhat
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different and more topological approach has been adopted by Martin Kovar [55]. For
more details on Zeeman-like topologies and their relationship with manifold topology
of space-time, we refer the reader to [56].
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